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ABSTRACT

A new algorithm which was named the "Overall Algorithm" is applicable to a 0-1
variable (Pseudo-Boolean) system of equations with an objective equation, or function,
and a set of inequality constraints. The objective equation can be linear or non-linear.
The set of constraints must be either all linear or all non-linear independent of the
objective equation.

The Overall Algorithm first solves the objective equation and checks the set of
constraints for feasibility. If the solution is feasible then the algorithm stops. If the
solution is not feasible then the Overall Algorithm moves to the set of constraints and
solves the set of constraints for a feasible solution. If there is a solution to the constraints
then the Overall Algorithm creates bounds for the optimal solution. This is conjectured
through application to 48 previously published problems that are listed in the thesis. In
addition to 48 problems there is a computer code in C-language for that portion of the
algorithm that deals with the objective equation.

This Overall Algorithm is significant because it is an alternative method for the
solution of Pseudo-Boolean systems of equations or models. It is a simple algorithm that,
based on computational experience, has been shown to be surprisingly accurate. Finally,

the most iterations required for this algorithm is n, where n is the number of variables.
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Chapter 1
BIBLIOGRAPHY AND BACKGROUND

1.1 Introduction.

The research the author conducted with respect to previous work done in this area
indicated that before 1960 there were was little done in the area of Pseudo-Boolean
Programming or the solving of these types of equations. G.B. Dantzig first pointed out
the real importance of bivalent (0-1) variables in 1957 (Hammer and Rudeanu, 1968).
From 1960 until now there are few people that have developed algorithms to solve the
type of problem discussed. The following is a brief discussion of some of those
individuals and their research. The research conducted currently indicates that there is no

algorithm which is similar to the algorithm described in this thesis.

1.2 Problem Description.

The Overall Algorithm developed here is applicable to a class of problems that are
defined, in general, in Chapter 2 with examples in Appendix A. The function, which the
author will call the objective equation, maps the elements 0 and 1 of the domain into the
range of integer numbers. As a result, all variables that define the objective equation or
constraints are either 0 or 1. The objective equation is a linear combination of terms that
are either one variable or cross products of variables. In this thesis this objective

equation can be described as f(x,, x,, . . ., X,). An example of an unconstrained,
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non-linear objective equation is:
Min f = 2x, +3x, — Tx3 — Sx,2,03 + 3x,%, + 9x,%5 (1.1)
The objective equation can either be unconstrained or constrained. If constrained,
then the constraints must either be all linear or all non-linear. An example of a

constrained objective equation where all the constraints are linear is:

Minimize Z = 6x, + 3x, + 9x, + 6x, + 12x,
s.t.

3x;, + 6%+ 3x; 4+ 3x,+ 6xg 2 12

21, +3x, -9x,+9x526

-Ox, +9x,+6x; —=3x;2-3

An example of a constrained objective equation where all the constraints are

non-linear is:

Maximize S5x,x; — 2x,X3X, + 4X,X3%, — 33X, + 42X,
s.t.
6xyx, + x,x3x, + 3x,x, <6
=22%3 + 5X, X4 = 2X,0K, + 5x 3%, £ 5
X1 + 2XoXy = X) = Xy XpX3 + 2X3X, S 2

In either case, the constraints are all linear or all non-linear although the terms could
be mixed. In the linear case all the terms must be linear or just contain one variable. But
in the non-linear case, there may be terms that contain just one variable but because it is
part of a constraint that contains terms with cross products the constraint is non-linear.
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1.3 Egon Balas.

Egon Balas has conducted much research in the Pseudo-Boolean area as well as
other areas. In the area of Pseudo-Boolean Programming and problem solving he has
developed, and proven, an algorithm which basically uses combinatorial method of
solving a system of linear equations (Balas, 1965).

The method is essentially a tree-search algorithm that uses information

generated in the search to exclude portions of the tree from consideration.
(Glover and Zionts, 1965, 546)

1.4 Peter L. Hammer and Sergiu Rudeanu.

Dr. Hammer and Dr. Rudeanu described a method of solving Pseudo-Boolean
equations in 1967. The basic idea of the method is the concept of a "Characteristic
function". They start with a dynamic technique for minimizing an unrestricted equation
and then incorporate a branching technique based on a set of rules. Combining these two
techniques with the concept of a "Characteristic function” they solve unrestricted and

restricted, linear and non-linear Pseudo-Boolean equations.

1.5 E.L.Lawler and M. D. Bell.

Hamdy A. Taha (Taha, 1975) describes Lawler and Bell’s method that uses explicit
enumeration to solve a non-linear Pseudo-Boolean set of equations. The algorithm
groups the terms in the objective equation together. The algorithm also groups terms
together in the constraints but it then solves the set of equations by applying a set of rules

to both the objective equation and the set of constraints. The algorithm uses binary
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addition to skip over a solution set that would not be feasible and thereby reduce the
number of iterations required to solve the problem. There is one important requirement
to this algorithm as Hamdy A. Taha states:

An important restriction on the above problem is that each of the
functions go;, oz» &11> 8120 - - - » 8m1> Emz iS MONOtONe non-decreasing in each of

the variables x,, x,, . . ., x,.(Taha, 1975)

1.6 F. Glover.
Hamdy A. Taha describes in his book, Integer Programming, 1975 Glover’s method

of "Enumeration Scheme." The method starts with a partial solution then enumerates
through the set of variables. If the algorithm encounters a solution that is not feasible then

it eliminates that partial solution without actually being considered.

1.7 Research on Algorithm Development.

The algorithm took several shapes during its evolution to its current state. As the
algorithm was developed there were problems that were needed to test the algorithm. In
Appendix A are some of the problems that the author used to demonstrate the capabilities
of the algorithm. The algorithm originally started as just Algorithm 1. Later in the
research, Algorithm 2 was developed to solve the system of constraints because the
author felt it necessary to address the constraints. Hence, the Overall Algorithm was

developed to tie the two algorithms together.
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1.8 Conclusion.

The author conducted a thorough research to ensure the originality of the algorithm
developed in this thesis. Although it does use a type of enumeration, the algorithm is not
similar to any of the before mentioned algorithms that use enumeration. Also, although
the algorithm does group the negative terms and the positive terms together like the
method of Lawler and Bell, it does not create a set of functions. Finally, all of the above
mentioned attempt to solve a system of equations considering both the objective equation
and the constraints simultaneously. The algorithm that will be described in detail in the

next chapter does not consider both at the same time.
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Chapter 2
PROBLEM DEFINITION AND SOLUTION

2.1 Problem Definition.

The functions f and g; are either linear or non-linear. As defined in Chapter 1, all of

the g; are the same with respect to linearity. The inequalities can be mixed < or 2 within
the set of constraints. The following are the general forms of the class of problems for

which the algorithm is applicable.

2.1.1 Minimize form.
Consider the following problem:
Minimize
2=}, X, X35 + .., X,)
subject to:
8, X5 ..., X,)2b; ie{l,2,...,m}
x;=(0,1) je(l,2,...,n}

m,n £10

L
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2.1.2 Maximize form.

The problem definition can also be in the form:

Maximize
2=1f(x);, X5 X3y .« . 1 Xp)
subject to:
8ilxy, X5 ..., X,)SD; ie{1,2,...,m}
x=(0,1) je{1,2,...,n}
m,n <10

2.1.3 Practical Applicability.

Pseudo-Boolean Programming has several applications in the area of mathematics.
The first is in combinatorial operations research (Hammer and Rudenau, 1967), the
second could be reliability testing for a system and the third could be in electric circuits.
Another area as stated by Egon Balas is economics:
It is well known that important classes of economic (and not only
economic) problems find their mathematical models in linear programs with
integer variables. Prominent among these problems are those that correspond

to linear programs with variables taking only one of the values 0 or 1.
(Balas,1964)
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2.2 Proposed Solution.

As discussed in Chapter 1 there are currently several algorithms developed and
proven to solve this type of problem. The algorithm in this thesis uses several concepts
that are different from those discussed in Chapter 1. Before discussed it is appropriate to
explain the solution that is generated. The overall algorithm has been shown to provide
one solution to the system of equations, if it exists. Algorithm 1 provides one solution to
the unconstrained objective equation. This is one disadvantage of the major concept
behind the algorithm. This concept is the ratio and ranking that is done by the algorithm.
There are essentially two ratios generated, the term ratio and the variable ratio. The term
ratios are used to generate the variable ratios. The variable ratio is a number and the
ranking uses this number to rank the variable in increasing order. The ranking puts the
least desirable variable first and the most desirable variable last. Least desirable is
defined as every coefficient of a least desirable variable is positive in a minimization
equation. Most desirable is defined as every coefficient of a most desirable variable is
negative in a minimize equation. This was designed, basically, to facilitate the user to
move toward the best solution, according to the algorithm. The ranking also defines the
branch of the solution the algorithm will follow. For example, the Overall algorithm
generates a ranking of variables 4, 5, 2, 1, 3 for eq. 1.1. We start with the general binary
tree as shown in figure 2.1 which identifies each variable and the possible value of each
variable. At the end of each branch of the tree is a possible solution to the eq. 1.1. The
problem is to find the combination of branches that will provide the best solution to the

equation.
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X1

0 1
x2
0 1 0 1
X3
0 1 0 1 0 1 0 1
X4
o/ \1 o fi1t O\ 1 o/ \1 4] 1 0o /11
[} 1 o 1
X
o]l 1]of 1]o] tJof | d o§ ojfo|d dio] 1]of 1] olg of 1| of 1| d 1|dq 1
2.
2.1 Binary Tree 1

All the variables are initially set equal to 1. The algorithm will iterate through the rank
order established, changing the first variable in the rank order to zero and deriving a
solution to the equation. The algorithm will compare each solution to the previous one
every time it changes a variable to zero. Since the algorithm is always applied to

minimization equation it will iterate through the rank order until a minimum is found.

Therefore, once the previous solution is less than the current solution the algorithm stops.

In our example, seen is section 1.2, it found the solution of z* = -7 and solution set
(1,1,1,0,0). Figure 2.2 shows one path to the solution z* = -7. Also identified on figure
2.2 are the other solution sets that obtain the solution z* = -7. They are identified by the

solution at the end of the branch.

I
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X1

0 1
x2
0 1 0 1
X3
0 1 0 1 [} 1 0 1
X4
o/ \1 0 1 0of\ 1 0 J\1 0 1 0 1
] 1 0 1
Xs,
ojt1joj1jo] 1o N a y ojgoly ayoj 1jof 1] 011 0} 1 11 qg ng 1
zc
77 7 7 -7
2.2 Binary Tree 2

The following paragraphs describe the reason for the various steps listed in order of
execution rather than importance to facilitate the reader in comparing them to the steps
listed in Chapter 3.

First, the overall algorithm uses Algorithm 1 to derive a solution to the objective
equation. It converts the problem to a minimization problem. This is important because
the algorithm uses two ratios that require the problem to be a minimization problem.

Second, a ratio for each term is created with the coefficient of the term as. the
numerator and the number of variables in the term as the denominator. This is the
contribution that each variable in the term contributes toward the solution. It also could

be the amount of impact that coefficient will have on the solution. As one can see, the
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more variables in the term the less likely that the term will impact on the solution because
there is a higher probability that the term will be zero, unless all of the variables in that
term are equal to one.

Each time a variable is present in a term the term ratio is added to a positive group
if the coefficient is positive and a negative group if the coefficient is negative. These
groups of ratios are summed and a second ratio is created. This second ratio is the effect
the variable has on the solution. The ratio is the negative sum over the positive sum. If
there are only negative terms that contain the variable in question then it is most
advantageous to retain that variable in the solution set. Therefore, the notation of infinity
is given to that ratio and is ranked highest. Likewise, if there are only positive terms that
contain the variable in question then it is a disadvantageous to retain that variable.
Therefore, the value of zero is given to that ratio and is ranked the lowest.

At this stage there are a few points worth noting. Some variables may have ratios
that are equal to other ratios. If the equality is among two or more variables that have
ratios equal to zero then it is unimportant because these variables will be zero in the final
solution. If the equality is among two or more variables that have ratios equal to infinity
then this again is unimportant because these variables will be one in the final solution.
The interesting equality is among two or more variables where the ratios are between
zero and infinity. When there is a tie, as demonstrated in Chapter 4, the algorithm refers
to the sum of the positive term ratios to break the tie. The variables are ranked in
decreasing order because they are considered the least favorable according to the impact
they have on the solution in terms of adding a positive coefficient. If there is still a tie
then this appears to indicate that the variables are of equal importance. This is an area of

possible solution sets rather than a solution. Finally, the ratio of the negative value over
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the positive value is why the problem is converted to a minimization problem. As
explained the ratios are ranked in increasing order and the variables are changed to zero
in the rank order until a minimum is found. Also, the constraints are converted from
Sto 2 as a matter of convention and because the ratios for the constraints, like the ratios
for the objective equation, are derived to find a minimum. The author believes the
algorithm could be changed to a maximize and the constraints converted from 2 to <if
someone were to:

1. Create ratios of positive over negative and,

2. Change the variables from one to zero in the rank order established until a

maximum is found.

Once Algorithm 1 derives a solution the Overall Algorithm applies this solution to
the system of constraints, if any. If the constraints are satisfied then the Overall
Algorithm stops. If they are not satisfied then the Overall Algorithm moves to Algorithm
2. Algorithm 2 derives a solution set, if it exists, in much the same manner as Algorithm
1. The only exception is the use of the y variable. Algorithm 2 then uses the objective
equation to derive a solution. It returns to the Overall Algorithm and the Overall
Algorithm uses the solution from Algorithm 2 and 1 to establish a lower and upper bound

for the optimum solution.

2.3 Code of Algorithm 1.

As a part of the proposed solution the author has coded Algorithm 1 in C computer
code (Appendix B). This algorithm deals with the objective equation and as a result will

provide a lower bound for the solution, if the constraints are not satisfied. The code only
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uses the four basic math functions and a sort function (Press et al, 1988). The code
currently will accept 30 variables and 30 terms but that can be changed by changing the
declaration of variables ROW and COL at the beginning of the code. The data is stored
in a way that makes the computations of the different ratios very simple. For example,
consider the equation: Minimize z = 2x, - 3x,x; + 4x,x,;. The data for this problem will
be stored in an array as shown in figure 2.3 below. Therefore, the coefficient for the

second term is stored in **terms(2,0) and the only variable is stored in **terms(2,3).

coefficient X, X, X3
**terms term 1 2 1 0 0
array in term 2 -3 0 0 1
C-code term 3 4 0 1 1

2.3 Array of data for C code

It is now a very simple process to sum the ones in the rows to obtain the number of
variables in a particular term. Also, it is easy to create the term ratio by dividing the
coefficient, in column zero, by the sum of the variables in that term. Finally, when
scanning the terms for each variable, if a variable is present then there will be a one in the

variable column.
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2.4 Pseudo - code of Algorithm 1.

The previous computer code can be condensed into nine mathematical steps called a
pseudo - code which is listed in Appendix G. The objective equation is defined in
mathematical terms but, it is the same as defined at the beginning of this chapter.
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Chapter 3
METHODOLOGY

3.1 Introduction.

The Overall Algorithm is described in detail is the following pages. After each step
is a brief explanation of the logic behind the step. The Overall Algorithm ties Algorithm
1 and Algorithm 2 together. The flowchart of each algorithm is contained in Appendix C
and the worksheets are contained in Appendix D. Algorithm 1 is coded in C-language
and the code is contained in Appendix B. Finally, the condensed word version of the
algorithm is contained in Appendix E.

3.2 Overall Algorithm.

This algorithm is designed for solving the class of problems described in Chapters 1
and 2. The class of problems usually consists of an objective equation and one or more
constraints. The constraints should be inequalities. This algorithm essentially uses the
solution set from Algorithm 1 for the objective equation and applies it to the set of
constraints. If they are satisfied then it stops. If the constraints are not satisfied then the
last variable in the rank order established in Algorithm 1 is changed to one and the new
solution set is applied to the set of constraints. The algorithm is basically moving
backwards on the binary tree to find a solution to the system of equations. If the

constraints are not satisfied then this algorithm moves to Algorithm 2 and attempts to
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satisfy the set of constraints. The author does not claim optimality.
3.2.1 Stepl

Solve for the minimum value and the solution set of the Objective Equation (OE)
using Algorithm 1. Take the solution set of the OE and apply it to the System of
Constraints (SC).

3.2.2 Step2

Are the SC satisfied? If yes then end the algorithm because the solution set is
feasible. If not then go to Step 3.

Steps 1 and 2 are done because the OE may not be restricted by the constraints.
3.2.3 Step3

Are there any zero variables in the solution set? If yes then change the last zero
variable of the rank order established in Algorithm 1 of the solution set to one, apply this
solution set to the SC, and return to Step 2. If no then go to Step 4.

As stated earlier, the variables are ranked in order of least desirable to most
desirable. By changing the last zero variable in the rank order from zero to one we are
adding the next variable that would increase the minimum value the least. Algorithm 2,
for the constraints, has been shown to not be optimal. Therefore, if a feasible solution can
be derived without Algorithm 2 then this will save time because the user will not be
required to use Algorithm 2.

3.24 Step4

Solve for the minimum value and solution set of the SC using Algorithm 2. If the

solution set exists the go to Step 5. If it does not exist then stop algorithm because

solution does not exist.
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In the event Algorithm 1 does not provide a solution set then we must employ
Algorithm 2 and focus on the solution set for the constraints.
325 StepS

At this point the algorithm can only bound the actual value of the OE. Using the
minimum value from Step 1 and the minimum value from Step 4 create a bound with a
lower bound from Step 1 and an upper bound from Step 4. End the algorithm.

Although Algorithm 2 does not always provide the optimal solution set it has been
shown to provide a feasible solution set when it exists. This solution set will provide a
solution from the OE and is usually different from the solution derived in Algorithm 1.
Hence, the interval is created although it is possible for both algorithms to derive the

same solution and different solution sets.
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3.3 Algorithm 1 for the Objective Equation.

This algorithm is applicable to all 0,1 variable unconstrained or constrained

18

problems. It is a sub algorithm or step of the Overall Algorithm. Specifically, it is step 1

of the Overall Algorithm. This algorithm solves the objective equation and derives a

solution set (x*) and solution (z*). Use the worksheet provided in Appendix D to record

information. The number of each step corresponds to the number of the block on the
worksheet. Also, at Appendix C is the code for this algorithm.
33.1 Stepl

Is the equation a minimize equation? If no then multiply the problem by -1. Record

the minimum equation in block 1

This step is done because when the algorithm iterates through the objective
equation it initially sets all the variables equal to one. Each time it iterates a variable in
the rank order is set equal to zero. It derives a new solution and compares the previous
solution to the new solution. The comparison is which solution is less. The algorithm
iterates until a minimum is found.
3.3.2 Step2
Multiply the objective equation out. Example:
Minimize

=2x,(1 = x) + x3(1 —x,) = =2x, + 20,0, + X, — XX,

Record this step in block 2.

The algorithm uses the coefficient of each term and divides the coefficient by the

number of variables in that term. Therefore, its relies on the fact that the objective
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equation is in its reduced form. Also, the algorithm can only solve for the actual value of
each variable. For example, it can solve for x, but not (1- x,). Therefore, each variable
must be in the objective equation as its actual form.
3.3.3 Step3

Record the positive terms of the equation in the block marked POS. Record the
absolute value of the negative terms in the block marked NEG. In the block marked
RATIO record the ratio of the absolute value of the coefficient of each term over the
number of variables in that term.
Step 3a
Record each variable in column 3a putting one variable in each row.

This step really has no mathematical or logical reasoning behind it. It is done for to
facilitate the user of the algorithm in organizing the information.
334 Step4
Scan each term in the positive block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
4 for the first variable.
NOTE: If the first variable is not present in any of the positive terms then record 0 for
that variable in column 4.
Step 4a
Sum the recorded answers in column 4 for the first variable and record that value in
column 4a of that variable row.

The ratio in step 3 is the term ratio. It is considered, by the author, to be the
contribution of each variable in that term to the objective equation. This contribution

may be positive (unfavorable) or negative (favorable). In this case it is the positive and
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when all of these contributions are summed they become the total positive contribution to
the objective equation by that particular variable. In a sense, this step also ties the
variables in each term together because if there are allot of variables in a term then this
ratio will be small. Likewise, if there are very few variables then this ratio will be larger
relative to having allot of variables in the term.
335 StepS5s

Repeat step 4 and 4a for each variable in column 3a. After this step you should have
a real number recorded in column 4a for each variable in column 3a.

Step 4 was an example looking at one variable. Step 5 is just a continuation of step
4 to the rest of the variables that are in column 3a.
3.3.6 Step6

Scan each term in the negative block group looking for the first variable in column
3a. Each time the first variable is present in a term record the ratio below the term in
column 6 of that variable row.
NOTE: If the first variable is not present in any of the negative terms then record 0 for
that variable in column 6.
Step 6a
Sum the recorded answers in column 6 for the first variable and record that value in
column 6a of that variable row.

This step is the same process as step 4 but for the negative term ratios.
3.3.7 Step7

Repeat step 6 and 6a for each variable in column 3a. After this step you should have
a real number recorded in column 6a for each variable in column 3a.

338 Step8
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Create a ratio for each variable of the number recorded in column 6a over the
number recorded in column 4a. Is there a zero in column 4a? If yes, then record infinity
(i.e., <) for the ratio of that variable in column 8. Do this for all variables that have a
zero in column 4a.

This step creates the variable ratio that was mentioned earlier. This step, the first
step, and step 9 are all tied together. As one can see if the ratio is large then that variable
contributes favorably to the objective equation because there is more negative
contribution (numerator) relative to the positive contribution (denominator). As a result
it is tied to the first step because the objective equation is always a minimization function
and the ranking in step 9 puts the variables in increasing order according to these variable
ratios. Therefore, the variable with the most favorable contribution will be ranked
highest and changed from one to zero last in the iteration portion of the algorithm.

3.3.9 Step9

In increasing order, rank each variable according to the ratio created in column 8.
The variable with the smallest ratio is in column 1 of block 9, etc. Record one for the
value of each variable in the value row of block 9.NOTE 1: If more than one ratio is
equal to zero, then rank those variables first among the other variables. Then rank them
according to the decreasing values from column 4a. If more than one ratio equal to
infinity then rank them last among the other variables. Then rank them according the
increasing value from column 6a.

NOTE 2: If there are ties of the non-zero and non-infinity ratios in column 8 then refer to
column 4a and rank them in decreasing order.

NOTE 3: If there are ties in either 6a or 4a then break them arbitrarily.
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As mentioned earlier, this step is tied to the first step because this step ranks the
variables according to their total contribution. Based on how the variable ratio is
constructed it makes sense that the closer to zero the ratio is the more unfavorable that
variable will be for the objective equation. Note 1 (i.e., the variable ratio is zero) puts
those variables that have no favorable contribution to the objective equation first in the
rank order and consequently they are changed to zero first. The reason they are ranked in
decreasing order amng their set is because intuitively you want the variable that
contributes the most positive value to the objective equation changed to zero first,
therefore, it is ranked first. Again, the same logic is applied to note 2. Column 4a is the
positive contribution of the variable to the objective equation and hence you want those
variables with the most positive contribution to the objective equation changed to zero
first for this group of variables. If the variables are equal at this point then there is no
other criteria to separate the variables and the variables in question probably have the
same contribution to the objective equation. In other words, the variables that are tied
have the same variable ratio, the same positive contribution and consequently the same
negative contribution. Her;ce, the variables in question probably have the same
contribution to the objective equation.

3.3.10 Step 10

Using the equation from block 2 solve for a z* value where all variables are equal
to 1. Call this value z* old and record z* old in block 10. Record the current value of the
variables in block 10 as x* old in vector form (i.e., (0,1,1,1)) in the rank order established

in Step 9.
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This step establishes the initial z* value to start the iterations and comparisons of z*
new with z* old. The x* is recorded with the z* as a matter of record keeping so the user
does not get confused as to which z* was derived from which x*.

3.3.11 Step 11

Cross out any previous z* new and x* new in block 11. Change the first non-zero
variable in the rank order in block 9 to 0 by crossing out the 1 below the variable in block
9 and record 0. Obtain a new z* value, with the new variable values, from the equation
in block 2. Call this value z* new and record z* new in block 11. Call the new variable
values x* new. Record x* new as a vector (i.e., (0,1,1,1)) in the rank order established in
Step 9. Record x* new in the corresponding z* new row of block 11.

This step changes a variable from one to zero and obtains a new z* value. Each
time this step is done it eliminates a variable that has more unfavorable contribution to
the objective equation. It will change variables to zero until a variable is changed to zero
that has more favorable contribution than unfavorable. It is important to note that one
can not look at the variable ratios and decide that all ratios less than a value, say one,
contribute favorable and should be equal to one and all the other variables are equal to
zero. This cannot be done because all of the ratios can be less than one or all greater than
one. The point to be made is that there is no fixed number that can be used as decision
criteria.

3.3.12 Step 12

If the z* old is less than the z* new then stop and go to step 14. Else, cross out z*

old and x* old in block 10 and record z* new and x* new in block 10 as z* old and x*

old. Go to step 13.
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Since z* old is less than z* new this means that a variable that has favorable
contribution was changed to zero. It is a strictly less than because this will force all the
variables to zero as possible without increasing the z*. If the z* remains unchanged for
more than one iteration then the variable that was changed to zero during the iteration
could either be zero or one. The author has also found that the z* that did not change
during the iteration is usually the final z* value.

3.3.13 Step 13

Is there a non-zero variable remaining in block 9?7 If yes, then repeat step 11 for the
next non-zero variable. If no, then go to Step 14.

Step 13 is merely a way to end the algorithm if all of the variables have been
changed to zero. An example of when this can happén is when all of the coefficients are
positive.

3.3.14 Step 14

The minimum value of the equaticn is z* old in block 10. The current values of the
variables in block 10, the x* old column, is the solution set. Match x* old with the rank
order of the variables in block 9 to determine the values of the variables. Record z* old
and x* old in block 14. End the algorithm.

NOTE: If you had to convert the equation t0 a minimum equation then you must multiply
the z* value by -1 to obtain the actual value of the equation.

The final step is simply identifying the solution derived by the algorithm. More
importantly it defines what the solution set is and where to record the solution and

solution se*.
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3.4 Algorithm 2 for Constraints.

This algorithm is applicable to all 0,1 variable constrained problems. Itis a sub
algorithm or step of the Overall Algorithm. Specifically, it is step 4 of the Overall
Algorithm. This algorithm solves the system of constraints and derives a solution set and
applies the solution set to the objective equation to derive a solution. Use the worksheet
provided in Appendix D to record information. The number of each step corresponds to
the number of the block on the worksheet.

34.1 Stepl

Are all constraints 2? If no then multiply all constraints that are < by -1.

Multiply the constraints out. Example:

Record all constraints after this step in block 1.

This step is tied to step 1 of Algorithm 1 because step 1 of Algorithm 1 converts the
objective equation to a minimization problem if it is not already that type of problem.
Since the objective equation is a minimize problem then the constraints should be greater
than or equal to inequalities as a matter of convention. The terms in the constraints are
reduced to just cross products of variables and not cross products of (1-x,) because the
algorithm uses the actual variables and not (1-x,).

342 Step2
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Multiply the i-th constraint by y; (if y; is the original variable then use z;) and add

the opposite of the right hand side (RHS) to both sides of the each constraint. Record in
block 2. y; is used to determine the tightness of the i-th constraint. It will be treated as a
normal variable but will not be solved for.

The y variable is used as an indicator and does not return a real number to be used
in solving the system of constraints. The author applied the logic that using the y; ties all
of the terms in all of the constraints into one constraint that should be greater than or
equal to zero. It is similar to the concept of surrogate variables in geometric
programming. If y; for the i-th constraint is less than one then the i-th constraint has been
found, by experience, to not restrict the objective equation or the constraint is not tight.
The reason the author is adding the opposite of the y; and not dividing by the RHS is
based on the concept of all the algorithms. This concept is the term ratio and the variable
ratio. Since the ratios that are used in establishing are reduced in magnitude by the
number of variables in each term the ratios are further reduced in magnitude when you
divide by the RHS. The term ratios are reduced so much that they become insignificant
and it becomes difficult to determine which variable should be ranked first, second, etc.
Chapter 5 discusses possible further research in this area.

34.3 Step3

Record positive terms of all constraints in the block marked POS. Record the
absolute value of the negative terms of all constraints in the block marked NEG. In the
block marked RATIO record the ratio of the absolute value of the coefficient of each

term over the number of variables, both original and y;, in that term.
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Step 3a
Record each variable in column 3a putting one variable in each row. Record all original
variables first then the y;.

Again, an administrative step to allow the user to organize the information.
344 Step4

Scan each term in the positive block group looking for the first variable in column
3a. Each time the first variable is present in a term record the ratio, below the term, in
column 4 for the first variable.
NOTE: If the first variable is not present in any of the positive terms then record O for
that variable in column 4.
NOTE: Do this for the y variables also.
Step 4a
Sum the recorded answers in column 4 for the first variable and record that value in

column 4a of that variable row.

This step is the same as step 4 of Algorithm 1 except for the y; variable. This step

is also done for the y; because these values will be used to determine the tightness of the
i-th constraint.
345 Step5

Repeat step 4 and 4a for each variable in column 3a. After this step you should have
a real number recorded in column 4a for each variable in column 3a.
3.4.6 Step6

Scan each term in the negative block group looking for the first variable in column

3a. Each time the first variable is present in a term record the ratio below the term in
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column 6 of that variable row.
NOTE: If the first variable is not present in any of the negative terms then record 0 for
that variable in column 6.
NOTE: Do this for the y variables also.
Step 6a
Sum the recorded answers in column 6 for the first variable and record that value in
column 6a of that variable row.
34.7 Step7

Repeat step 6 and 6a for each variable in column 3a. After this step you should have
a real number recorded in column 6a for each variable in column 3a.

Steps 5 through 7 are the same as steps S through 7 of Algorithm 1. Again, the only
difference is the y; variable.
34.8 Step 8

For all variables other than the y; introduced at Step 2. Create a ratio for each

variable of the number recorded in column 6a over the number recorded in column 4a. Is
there a zero in column 4a? If yes, then record infinity (i.e., <o) for the ratio of that
variable in column 8. Do this for all variables that have a zero in column 4a.

This step uses the same logic as step 8 of Algorithm 1.
3.4.8a Step 8a

For all variables y; introduced at Step 2. If the ratio for y; is less than one then that

constraint in probably not restrictive. Record n (i.e., not restrictive) for the rank in block
9. If the ratio for y; is greater than one then that constraint is restrictive. Record r (i.e.,

restrictive) for the rank in block 9. Restrictive is defined to mean that a particular
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combination of variables are turned on and the others are off in order to satisfy all the
constraints. Non-restrictive means the original variables could be either 0 or 1 without
violating the constraints.

Understanding that the ratio is the sum of the negative contributions divided by the
sum of the positive contribution is the important concept of this step. If, for y;, the ratio
is less than one then this implies that there is greater positive contribution relative to the
negative contribution. Contribution in this case is the contribution of each term toward
satisfying the constraint. An example in Chapter 4 will demonstrate this concept in
greater detail.

349 Step9

In increasing order rank each variable according to the ratio created in column 8.
The variable with the smallest ratio is ranked 1 block 9, etc. Record zero for the value of
each variable in the value column of block 9.

NOTE: If more than one ratio equal to zero then rank those variables first among the
other variables. Then rank them according to the decreasing values from column 4a. If
more than one ratio equal to infinity then rank them last among the other variables. Then
rank them according the increasing value from column 6a.

NOTE: If there are ties of non-zero or non-infinity ratios in column 8 then refer to
column 4a and rank them in decreasing order.

NOTE: If there are ties in either 6a or 4a then break them arbitrarily.

The logic in rank ordering the variables in this step is the same as in step 9 of
Algorithm 1.

3.4.10 Step 10
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Record the value of O for the variables in block 10 as x* in vector form (i.e.,
(0,0,0,0)) in the rank order established in Step 9. Solve the system of constraints.

This step is significantly different from Algorithm 1 because Algorithm 1 sets the
variables equal one and this algorithm sets them equal to zero. The logic here is
understanding the variable ratio concept and the ranking concept. Remember that if a
variable is ranked first then this implied that the positive contribution is greater than the
negative contribution. By putting that variable first means that it will be changed to one
first and consequently add positive terms to each of the constraints. The author
understands that there will most likely be several non-linear terms and it may require
more than one variable to add positive value to the constraints. Finally, there may be a
variable that has positive contribution in all constraints except one but, this becomes
insignificant when other variables are changed from zero to one.

3.4.11 Step 11

For each constraint does x* satisfy the constraints in block 1? If all constraints are
satisfied then go to block 14. Else go to Step 12

This step is merely the iteration of the algorithm through the ranking of the
variables until all the constraints are satisfied.

3.4.12 Step 12

Cross out any previous x* in block 10. Change the first zero variable in the rank
order in block 9 to 1 by crossing out the 0 in the variable row of block 9 and record 1.
Record x* new in block 10 in the order established in Step 9. Solve the system of
constraints. For each constraint does x* new satisfy the constraints in block 1? If all
constraints are satisfied then go to block 14. Else, go to step 13.

A continuation of the iteration through the ranking of the variables.
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3.4.13 Step 13

Is there a zero variable remaining in block 97 If yes, then repeat step 12. If no, then
end the algorithm because there is no feasible solution.

At this point all of the variables have been changed to one and the particular
ranking of the variables did not produce a feasible solution. The order in which the
variables are changed to one is the critical aspect of the algorithm. Referring to the
binary tree in Chapter 2, the order in which each branch is chosen is paramount to
obtaining a feasible, if not optimal solution.

3.4.14 Step 14

The current values of the variables in block 10, the x* column, is the solution set.
Match x* with the rank order of the variables in block 9 to determine the values of the
variables. Record x* in block 14. Use x* to solve for the value of the objective equation
and record the value (z*) in block 14. End Algorithm 2. Return to Overall Algorithm.

This step is done to extract the final solution and solution set from the worksheet.
Particular attention must be used because the final solution set is in increasing rank order
and not in increasing subscript order. Although the solution set is written as a vector does

not mean that the number listed in the third element of the vector is x,.
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Chapter 4
EXAMPLE PROBLEMS

4.1 Introduction.

In Chapter 3 the Overall Algorithm was discussed. Selected examples from
Appendix A will be demonstrated in this chapter. The complete worksheets that the
author will use in the solving the problems are in Appendix D.

4.2 Number 29.

The first problem will be solved using the worksheet and the code for Algorithm 1.
The problem is an unconstrained objective equation from the book Integer Programming
by Robert S. Garfinkel and George L. Nemhauser, 1972, page 362:

max f(x) = 3x; — X, — 2X,X3%s5 + 22X — X1 X X6 + 2X,

4.2.1 Steps1 thru 3 Algorithm 1.

The Overall Algorithm starts the process and moves to Algorithm 1 which is
actually the only algorithm that applies to this unconstrainted problem. Referring to
Chapter 3 on executing Steps 1 thru 3 of Algorithm 1 we have the first portion of the

worksheet completed as shown in figure 4.1. Step 1 is convert the maximize problem to




a minimize problem. Step 2 is simplify and in this case it was not needed so the equation

from Step 1 is recorded in block 2. Finally, Step 3 which is group the positive terms

together and the negative terms together.

1 Minimum Problem
=3x) + X5 + 2%, X3 X5 — 205X + Xy XX — 2X,4

2
=3x; + X + 21 X3%5 — XX + X, XX — 2X,4

l 3 Group Terms I

2X,X3Xs Xy X4Xg

2 1

3

4.1 Number 29, Algorithm 1, Steps 1-3 worksheet

4.2.2 Steps 3A thru 8 Algorithm 1.

Continuing the process we execute Steps 3a thru 8. Step 3a is recording the
variables in column 3a of the worksheet. Step 4 is recording the positive term ratios in
the variable row x; and column 4. The term ratio is recorded if the variable is present in
that specific term. Step 4a is summing the values in column 4a and recording the sum in

column 4a. Step 5 is repeat the process for the remaining variables in column 3a.
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Likewise, Steps 6, 6a, and 7 are for the negative terms ratios. Finally, Step 8 is
recording, for each variable, the number is column 6a over the number in column 4a and
hence producing another ratio that will be used to rank the variables. We now have

blocks 3a thru 8 completed as shown in figure 4.2.
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3A +) ) )

Variables +)

4 4A 6 6A 8

X, ; % 1 % 3 3

X, % 1 ; 1 1

X3 : : 0 0 0
S EA

Xs : : 0 0 0

Xg ; : : 1 3

4.2 Number 29, Algorithm 1, Steps 3a-8 worksheet

35
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4.2.3 Steps 9 thru 14 Algorithm 1.

Using the values from column 8 we can now rank order the variables in increasing
order. There are two ties among four entries in column 8. The first tie is between
variables x, and x;. According to step 9 these two variables would be ranked first among
the other variables. Between variables x, and x, the variable that is ranked first is
arbitrary because both variables are totally equal in all columns. Therefore, the first and
second in the rank order is X, then x, in that order. The reader can verify that the order
will not matter. The second tie is between variables x, and x,. These are non-zero and
non-infintiy ratios which means rank them in decreasing order according to column 4a.

Hence, we have the rank order established as shown in figure 4.3.

Rank 1 2 3 4 5 6 7 8 9
Variable 3 5 2 1 6 4
Value 1 1 1 1 1 1

4.3 Number 29, Algorithm 1, Step 9 worksheet

We have now established a rank order and value for all the variables. Setting all x,
equal to one we derive z*. O1  rst z* will be z* old and its value is -3. We now change
the value of the first variable. .;, 10 0 and derive a new z*. This z* will be called z* new

and its value is -5. Moving to Step 12 we determine that z* new is less than z* old so, we
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replace z* old with z* new. Repeating Step 11 we cross out z* new, change the next
variable, x, in the rank order to zero, and derive another z* new. The new z* new is -5
and z* old is not less than z* new therefore, we repeat Step 11 thru 12 one more time.
The comparison in Step 12 this time tells us to move to Step 14. The final value of z*
new is -4 and z* old is -5. Step 14 states that if we had to change our equation to
minimization problem that we must multiply z* old by -1 to find the final solution. This
gives us a final solution of 5 and a final solution set of x; =X, =X, =x¢=1 and x; = x5 =
Oor(1,1,0,1,0,1). Figure 4.4 shows the applicable portions of the worksheet for steps 10
to 14. At Appendix F is the input required for number 29 and the output generated.

I 10 z*old x *old
l 3 (1,1,1,1,1,1)

-5 0,1,1,1,1,1)
z*new| x*new |z* new|x* ne -5 0,0,1,1,1,1)
-5 ](.,1,1,1,,1)
-5 1(0,0,1,1,1,1)
-4 ] (0,0,0,1,1,1)

14 Solution z*= -5 x*=(1,1,0,1,0,1)

4.4 Number 29, Algorithm 1, Steps 10-14 worksheet




T-4003 38

4.3 Number 28.

The next problem is a constrained non-linear system of equations. The problem is
from the book Integer Programming by Robert S. Garfinkel and George L. Nemhauser,
1972, page 363:

max z(X) ==3x,X3%s5 — 2x, — 4x,%, — 3x; 4.1)
s.t. 2x; — 3x,.05 + X, — 2x,xs < =2 4.2)
_x1x4 —xz + hg —X4xs + 3x;x5 S 0 (4.3)

The author will use the complete Overall Algorithm to solve the system of equations.
Referring to either Chapter 3 or Appendix C, the flowcharts, we find that the first step of
the Overall Algorithm is derive a solution and solution set with a rank order using

Algorithm 1.

4.3.1 Steps1, 2, and 3 of the Overall Algorithm and Algorithm 1.

Since Algorithm 1 was demonstrated in problem 29 it will be left to the reader to
verify the solution to the objective equation. The solution for problem 28 is z* =0 and 3
rank order is Xxs, X5, X4, X3, X;. The value of all the variables is zero. It should be noted
that Algorithm 1 allows more than one possible solution. This happens because there is a
tie between variables x,, x,, and x,, x, but, the change of the rank order does not change
the solution. Once we have completed the steps of Algorithm 1 we return to the Overall

Algorithm.
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The Overall Algorithm leads us to apply the solution set derived in Algorithm 1 to
the system of constraints. If they are satisfied, then end the algorithm. The solution set
does not satisfy the system of constraints (eq. 4.1, eq. 4.2, eq. 4.3). As we continue the
Overall Algorithm we change the first zero variable in the rank order to one and apply the
new solution to the system of constraints. The new solution is x5 = X, = X, = X, = 0 and x,
= 1 which again does not satisfy the system of constraints. It can be shown that the
solution set does not satisfy the system of constraints (eq. 4.1, eq. 4.2, eq. 4.3). Table 4.1
shows steps 2 and 3 of the Overall Algorithm. Step 2 checks each constraint using the
current solution. Step 3 changes the last zero in the current solution to one then returns to

step 2. The solutions listed in column step 3 are listed in rank order.
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4.1 Number 28, Overall Algorithm, Steps 1-3

Step 3 Step 2
Rank x, x,, X,, X3, X; constraint 1 constraint 2
Initial valuesof z =0 satisfied ? satisfied ?
(Xs» X2, Xs» X3, Xy)
(0,0,0,0,0) 0 no 0 yes
(0,0,0,0,1) 2 no 0 yes
(0,0,0,1,1) -1 no 2 no
0,0,1,1,1) 0 no 1 no
0,1,1,1,1) 0 no 0 yes
(1,1,1,1,1) -2 yes 2 no

Hence, we move to step 3 of the Overall Algorithm and use Algorithm 2 to solve
the system of constraints. We will use the solution derived in Algorithm 1 of z* = 0 and

the rank order of X, X,, X4, X3, X, to establish bounds of the solution in step 5 of the

Overall Algorithm.

4.3.2 Steps 1,2, and 3 of Algorithm 2.

Referring again to either Chapter 3 or Appendix C we find that step 1 is change all
the < to 2, simplify, and record in block 1 of the worksheet. Step 2 is multiply the i-th
constraint by y,, add the opposite of the RHS to both sides of each constraint, and record
the results in block 2. Step 3 is group all positive terms together and all negative terms

together then record the absolute value of the term ratio. Figure 4.6 shows the completed

worksheet.




=2%) + 3,05 — X, + 2x, x5 2 2

XX X — 2X3 + X4Xs — 32,5 2 0

=2x,Y; + 3%, Y, — XYy + 2XXsy; = 2y, 2 0

X1XsY2 + X2Y2 — 2X3Y2 + X X5y, = 3x,%5y, 2 0

I 3 Group Terms I

IPOS. NEG.

I X3Y1 2XXsY) X XaYr XoYy XeXsY, 201 Xy 25y, 30xsy, 2y,
3 2 1 1 1 2 1 2 3 2

3 3 3 2 3 2 2 2 3 1

4.5 Number 28, Algorithm 2, Steps 1-3 worksheet
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4.3.3 Steps 3A Thru 9 of Algorithm 2.

Once we have established the term ratios and recorded the variables in column 3A,
we are ready to record the ratios for each term in the appropriate column. If the variable
is present in the positive term then record the ratio of that term in the variable row of
column 4. This is step 4. Step 4A is summing these ratios in each variable row and
recording the results in column 4A. Step 5 is completing this process for each variable,
to include y, and y,. In executing step 6, we apply the same concept to the negative terms
and record the results in column 6. Again the process is completed for the negative terms.
Step 6A is the summing of the ratios and step 7 is completing this process for each
variable. The ratios are created in step 8 and are recorded in column 8. The rank order is

done in step 9. Figure 4.7 shows the applicable portion of the completed worksheet.
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3A (+)
4
31
X1 33
1
X2 ;
3
X3 5
211
X4 333
2 1
Xs 33
3 2 2 1 2
Y1 3 3 1.66 2 2 1 35121 |R
1 1 1 2 3
y2 i3 3 1.16 2 3 2 1.7 | R

4.6 Number 28, Algorithm 2, Steps 3a-9 worksheet
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Before proceeding to the next steps it is interesting to note the values of y, ratios.
Both ratios are greater than 1 which indicates that the sum of the contributions of each
term on the left hand side of each consrtaint is less than or equal to the RHS. Block 2 of
figure 4.6 demonstrates this conjecture. Based on what the constant is on the RHS this
could be a constraint that must be satisfied (tight) rather than a constraint that will always

be satisfied.

4.3.4 Steps 10 Thru 14 of Algorithm 2.

Steps 10, 11, and 12 are the iterations through the constraints with a new x* each
iteration. Specifically, step 10 derives the first solution with all variables equal to zero,
and step 11 checks the solution set x*. Step 12 changes the first variable in the rank
order to one and returns to check the solution set with the system of constraints to derive
which constraint is violated. If no constraint is violated then we move to step 14.
Otherwise, we continue changing variables to one until either a solution is found or no
feasible solution is found. If no feasible solution is found then we are at step 13 and the
algorithm is ended. If there is a solution found then we move to step 14. At step 14 we
match x* with the rank order and derive a solution set, and ultimately the solution z*.
Our final solution and solution set is shown is figure 4.8. We then return to the Overall

Algorithm to finish the problem.

(1,0,00,0) }(1,1,1,0,0)
(0,0,0,0,00 1{(1,1,00,00 [(1,1,1,1,0)
14 Solution x* = (1,0,1,1,1)

4.7 Number 28, Algorithm 2, Steps 10-14 worksheet
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4.3.5 Steps 4 and S of the Overall Algorithm.

We now have two solutions and solution sets for system of equations. Steps 4 and 5
of the Overall Algorithm checks the solution against the system of constraints and
establishes the upper and lower bounds of the optimal solution. These bounds are from
Algorithm 1 and Algorithm 2 and they are 0 and -6. So, the optimal solution is

conjectured to lie between these two points and in fact the optimal solution is -6.
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Chapter §
CONCLUSION AND
SUGGESTIONS FOR FURTHER STUDY

5.1 Conclusion.

The Overall Algorithm contained in this thesis is not optimal, as demonstrated in
Chapter 4. But the ease in which a solution is found demonstrates that it could be useful
in providing a feasible starting solution and solution set for a more time consuming
algorithm. More importantly it will identify a problem that has no solution. Algorithm 1
for the objective equation has been demonstrated to find the optimal solution regardless
of the equation. Another important aspect of the Overall Algorithm is the ability to
provide a least an upper and lower bound for the solution, if it exists, in a fraction of the
time required to derive the optimum solution. Finally, since Algorithm 1 is coded a
solution to the objective equation can be derived quickly and applied to the system of

constraints. This will provide, at a minimum, a starting solution and solution set.

5.2 Further Study.

There are numerous areas of possible research and study. Several of these areas
will be discussed in detail. One area not discussed in detail is researching the run time of
this algorithm. If n were the number of variables then, other algorithms researched by the

author required as much as 2° possible iterations and the Overall Algorithm takes, at
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most, n iterations. Therefore, the Overall Algorithm is intuitively faster because it only
makes one pass to find a solution rather than iterating to find all possible solutions. As
the problems become larger how much faster is the run times compared to commercial

software.

5.2.1 Proof of Optimality.

In mathematics, "algorithm" is commonly understood to be an
exact prescription, defining a computational process, leading from
various initial data to the desired result (Markov, 1971).

The author has demonstrated that the algorithm is exact. It has yet to be proven that
the algorithm is exact. The following paragraphs outline how the author will prove the
algorithm is exact or optimal.

First would be the proof of optimality with respect to Algorithm 1. The Overall
Algorithm has been demonstrated to not be optimal (i.e., #11, #26, Appendix A) but,
Algorithm 1 has always found the optimal solution when applied to either an
unconstrained objective equation or a constrained objective equation where the minimum
of the objective equation satisfied the constraints. A general outline of the proof could be
to show that the solution derived is always contained in the optimal solution set. First
would be the theorem for the partial solution set where the variables have ratios that are
either equal to zero or infinity. The remaining portion of the proof would be to show that
the remaining variables are part of the optimal solution set. Figure 5.1 shows an example
of 10 variables in a rank order and each with a variable ratio. As one can see the rank

order and ratios facilitates proving the complete solution set is contained in the optimal
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solution set. The first portion, as stated earlier, would contain the theorems that prove

1. The zero ratio variables, in the beginning of the rank order ,should be

set to zero,

2. The infinity ratio variables, at the end of the rank order, should be set

to one.

Next, would be the proof that the Overall Algorithm always provides bounds on the
optimal solution, when it exists. As demonstrated the Overall Algorithm does provide

bounds for the optimal solution and research conducted indicates that may always be true.

Xo X2 Xz X4 X5 Xo X7 X3 X X

zero | O<ratio<eo | infinity ratios

ratios

5.1 Diagram of variable ratios

Finally, the Overall Algorithm is for a certain number of variables. If one could
show optimality for a small number, less than 10, then it would be a simple step to show
for large number of variables. Coding the Overall Algorithm would facilitate this area of

research.
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5.2.2 Code of the remaining Algorithms.

Another area of research is the coding of the Algorithm 2 and the Overall
Algorithm. The Overall Algorithm and Algorithm 2 could be coded and linked together
with Algorithm 1 which has already been coded. Once completed the researcher could
conduct a comparison between the code produced and a published code. An example
would be comparing solution sets and solutions between the code produced and STORM
for the totally linear system of equations. Also, the current code needs to be expanded to
accept problems with more than 30 variables and 30 terms. Based on the design of the
code this would require changing the fixed memory allocation of 30 to a changin-
allocation to meet the size of the problem. Another modification of the code would be to
improve the way data is input into the computer. Currently, for each term the user must
answer yes the variable is present (enter 1) or no the variable is not present (enter 0) for
each variable. This is more time consuming than running the code. If the user were only
required to input the variables that were present in each term as the terms were input then
this would reduce input time tremendously. Finally, an additional aspect of coding the

complete algorithm is the research of the y, variable.

5.2.3 Analysis of the y, variable.

The specific area of further research is the analysis of the y; variable used in
Algorithm 2. The y; variable seems unnecessary because the algorithm does not use the
y; variable directly. But application of the algorithm to example problems in Appendix A
will demonstrate that the algorithm does not yield a optimal or feasible unless these y,

variables are used in the algorithm. The analysis could determine the relationship the y;
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and the RHS. The author considers this because the RHS usually has the most impact on
the y,. A review of the algorithm will show that the RHS is not multiplied by any other
variable except the y, and, therefore, usually has the most impact on the ratio of the y;

variable.

5.2.4 Division by the RHS.

Another area of research is dividing the right hand side (RHS) through both sides of
the constraint instead of subtracting, from both sides of the constraint, the RHS. The
reason the author is adding the opposite of the y; and not dividing By the RHS is based on
a concept in Algorithm 2. This concept is the term ratio and the variable ratio. Since the
ratios that are used in establishing the term ratio are reduced in magnitude by the number
of variables in each term the term ratios are further reduced in magnitude when you
divide by the RHS. It is possible that the algorithm could be improved by only dividing
each constraint by the RHS. The author has done several problems using this concept

and has produced favorable results.

5.2.5 Improvement of the Overall Algorithm.

Another area related to the y variable is the fact that Algorithm 2 does not totally
consider the constant RHS in the constraint. Currently the RHS is used in establishing
the y; ratio but it is not used in establishing any of the x; ratios. Division by the RHS, as

disussed, is a method of considering the RHS with the x; variables. Another method
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would be to subtract the RHS from each coefficient. If the algorithm could be improved
to consider RHS then this will move the solution set derived in Algorithm 2 closer to the

optimum solution set and ultimately closer to the optimum solution.
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5.3 Conclusion.

It is conjectured that the real class of problems that the Overall Algorithm can solve |,
is not limited to the definition in Chapter 2. A method by Glover and Woolsey will
replace any constraints that are non linear by constraints that are linear. The method is
taught by Dr. Woolsey during his Integer Programming class and is explained in this
fashion.
'Consider the cross product x,x, and let x,x, = x,,. This cross product can now be

replaced by the variable x,, and two constraints. The two constraints are:

xl +X2"'.x12 S 1

—.xl —xz + lez S 0.

This will transform any problem that is not considered in the class of problems to a
problem that the algorithm can solve. If minor further research could show this to be true

then the Overall Algorithm will be applicable to any 0-1 variable problem.
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APPENDIX A
PROBLEMS
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Below are several problems with the answers provided. The format for the
problems is: problem, problem type (N-nonlinear constraints or objective equation,
U-unconstrained, L-linear objective equation and constraints), how the answer was
obtained (i.e., storm, IE-implicit enumeration, Balas method, BR-book referenced,
etc), z* value and, variables values in vector form that obtains the z* value. All
variables are 0,1. All problems not referenced were generated by the author. At the
end of the appendix are the solutions derived by the algorithm for all problems.

Author Kevin J. Loy
updated February 26, 1991

1. MIN x,-x,—-xX,
UIE -1 (1,1),(0,1)

2. MAX "2xl + 3x2 - 5.x1x2
U IE 3 (©1)

3. MAXxyz-T7x+6y-4z
U IE 6 (01,0

4. MAX 100x, — 200x,x, + 150,
UIE 150 (0,0)

5.  Min -25x, - 30x;x, —- 3x,
U IE -58 (1,1)

6. MIN x,-x,—xx,
s.t. X,—x, 50
N IE -1 (1,1

7. MAX -2x,+3x,-5xx,
S.t. le—hs 1
N IE 3 1
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8. Min 4xx, - 3x, + 20x, — Sxx,
s-t-x1+1221

X,+x21
N IE '5 (17091)

Minimize 5x; + 3x, + X3 -9xxx%,
st.x;, + x, + x3 <1
x + x 21
N IE 3 (00,)
10. (Lee, Moore, Taylor, 1985, 755).

Minimize Z = 2x, + X, + 3x; + 2x, + 4x;
S.t.

X +20+x+ X, +2x524

T+ x, =3x,+3x522

- 3xl + 3x2 + sz —XS 2 —1
L BR 5  (0,1,00,1)(1,1,0,1,0)

11. (Lee, Moore, Taylor, 1985, 772).
Miminize Z = 30x, + 12x, + 10x, + 18x,

s.t.
2x|+4x2+6x3—ZX424
4+ X~ X3—2x,23

L STORM 40(1,0,1,9)

56
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12. (Lee, Moore, Taylor, 1985, 772).

Minimize Z = 6x, + 3x, + 9x, + 6x, + 12x;
s.t.

3x, +6x, 4+ 3%, + 3x, + 6x52 12

21, +3x, -9x,+9x26

9%, +9x,+6x; -3x52-3

L STORM 15(1,1,0,1,0)

13. (Winston, 1987, 364).

14.

Maxz=xl_x2
S.t.
x+2x,<2

x—-x<1

LIE 0 (00

Minimize 2x,x; - 19x,0x; + 15x,%, — 9x3x,
s.t.

2x,0, ~ 5x, X, + Gxx, < 4
XXy —4x; + X%, +3x, <5

2x3 4+ 5x32,%) — 4x, 2 3

N IE -11 (1,1,1,1)
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15.

16.

17.

Maximize 2x;—4x,x, — 3x,x3 + 8x,%, — 6x,

s.t.
XX — X3Xy + szx4 21

2x,x4 - 5.x2x4 + 4x,x; 21

N IE -3 (1,1L,L,1)

Minimize -—4x,+ 2x;—3x.x; - 5x,x,
s.t.

3x,x3 = 1x3%, + 2X,X3%, 2 3
=2X3X, = 3X%, + 2X,03 + X, 2 -2

N IE ’10 (1,1,1’1)

Maximize —3x,x,+ 4xX3%, — X, X3 + 42,03 + X,XaX,

s.t.
~XyX3+ 3x, + XXy — 2x3%, SO
5x1x4 _x2x3 + 3.xlx3X4 < 5

XX+ XX = XX, S 1

N IE 6 (OLL1
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18.

19.

20.

Maximize 5x,x; ~ 2X,X5%, + 4X,X3%, — 3x3%, + 4X,%,

s.t.
6X3X, + X, X%, + 3%, X, £ 6
=22,%5 + SX, X, = 22X, X%, + SX3X, £ 5

XXy + 20,003 = Xp = Xy XoX3 + 2X3X, S 2

N IE 5 (1,0,1,0),(1,1,1,0)

Minimize 5x,x;— 3x,x; + 2x; ~ XX,
S.t.
3XIX3—ZX3+ZX2X3+2x22 2

2xle + 4X2x3 - 3X3 +X2 - 3x1X3 < 2

N IE -3 (0,11

Minimize 10x%,x, — 8x,%, + 3x,%; — 7x3x,
s.t.
XXy = XoX3 + XX s = Xy Xy + 2, X4 2 2

2X,.3 + XaXy + XXy — 3x,03 — 26, — 2X,X, S 3

N IE -8 (1,1,0,1)

59
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21.
Maximize 1 lxzx:; - 4xl.x2 + 3xlX3 - sz +x1

s.t.
4x.x; — 22X, + 4x, %, — X,x3 S 4
2x, %3~ 3%, + 3%, + 20, — X%, £ 2
XX+ X1 X3 — Xy X — Xy XaXs 2 1
N IE 4 (1,0,1)
22. (Winston, 1987, 419).
Maximize 4x, +2x,—x;+2x,
s.t.
X +3x,-x—-2x,2 1
LIE 8 (1,1,0,1)
23. (Winston, 1987, 424).
Max z=2x;-x,+ X3
s.t.
X +205-x,51

X+ X+x,52

L BR 3 (10,1

24. (Winston, 1987, 429).
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Max z=5x;—-7x,+ 10x; + 3x, — x5
s.t.
=X =30+3x;—- x,—2x520
=2x; = 5%+ 3x; - 20, — 2x5 < 3

- Xt X3+ Xx4— x522
L BR 18 (1,0,1,1,0)

25. (Balas, Operations Research, 1965, 13:536).
=5x; + 7x, + 10x; — 3x, + xs = Min
=X, =3%,+5x%;—- x,—4x520
-2x; — 6, + 3x3— 2x, — 2xs S —4
-20+2%,+ X;— X520

L Balas’ Method9(1,1,1,1,0)

26. (Hammer and Rudeanu, Operations Research, 1967, 13:254).

Min 7x; —2x, + 3x; + 2x, — x5 — 6x5 — 4x; + 2x,(1 — x5) — 5(1 — x,)x,
Hxax; + (1 =x5) (1 = x3) + 3x6%; + %, (1 = x3)x5 + 4x, (1 — x3) (1 = x¢)
=5X,5X, + XXXy — 3x3% 5%, + 2X5(1 — x5 )x6(1 — X;)
s.t.
2(1-x,)=5x,4+3x,+4(1 = x,) = Txs+ 165, — x; 2 4

XX+ 4(1 = X, )3 — 3xx3x5 + 6(1 — X, x,x6 2 ~1

306, —5(1 = x) (1 = x3) (1 = x5) + 4xx5 2 1

N H&R’s Method-11(0,0,0,1,1,1,1)

61
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27. (Garfinkel and Nemhauser, 1972, 349, eq[19]).
Unconstrained Maximization

f(x) = 2x; + X5 = Txy = 5x,2,%3 + 3x,%4 + 9x,%s
U Balas’ Method15(1,1,0,1,1)

28. (Garfinkel and Nemhauser, 1972, 362).
max z(X) ==3xX3Xs— 2x, — 43X, — 3x;5
s.t.
le - 3XIX3 +x4 - 2x4x5 S —2

=X Xy — X, + 2X3 — X X5+ 3x,xs < O

N IE -6 (10,1,1,1)

29. (Garfinkel and Nemhauser, 1972, 363).
max f(x) = 3x; — X, — 20,X3X5 + 2X,X — X1 XX + 2%,
U IE 5 (1,0,0,1,0,0),(1,1,0,1,0,1)

30. (Hammer and Rudeanu, 1968, 104).
minimize 2+3X1 —2x2-5x3+ZX4+4x6

S.t.
2xl _3x2+SX3—4X4+2sxs—x6 <2

4x1 +2x?'+X3+8x4—x5—3X6 2 4

L H&R’s Method-3(0,1,1,1,0,0),(0,1,1,1,1,0)

31. (Hammer and Rudeanu, 1968, 110).
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Min f =2-3x,+x,+5x,
s.t.

2, +3x,+5x,2 3

4x, +5x,-3x, 21

L H&R'’s Method0(1,1,0)

32. (Hammer and Rudeanu, 1968, 117).
Min f = 2x; + 3x, — 7x3 = 5x,.0,%3 + 3x,x, + 9x, x5 — 2x,X¢
N H&R’s Method-9(1,1,1,0,1)

33. (Hammer and Rudeanu, 1968, 118).

Minf = le + 3x2 - 7X3 - 5x1x2x:; + 3XQX4 + 9x4x5
N H&R'’s Method-7(0,0,1,0,0),(0,0,1,0,1),(0,0,1,1,0),(1,1,1,0,0),(1,1,1,0,1)

34. (Hammer and Rudeanu, 1968, 126).
minimize 3x,(1 —x;) — 8(1 —x; 3% + 4x,%5(1 — X6) = T(1 = x5)x6 + 3%, — Sx,X5X6
s.t.

2x1_3x2+5x3—4X4+h5_x652

4x‘+2xz+x3+&4-x5_3x62 4

N H&R’s Method-12(0,1,1,1,0,1),(0,0,1,1,0,1)

35. (Hammer and Rudeanu, 1968, 136).

Min f = 3x,x; + 9205 — 7(1 — x;)x5%6 + 223%,(1 — Xg) + 42, (1 — 1)05(1 — x) (1 — X506 — 5%, + 5% + 20,(1 — %)
U H&R'’s Method-10(0,1,0,-,1,1,1,0),(0,1,1,0,1,1,1,0)

36. (Hammer and Rudeanu, 1968, 138).

min 2x,x, = 3x,x, = 5x;, = 8X2%3%4 = 3X5%; + 2X3%6 — 5X, X6 + TX5X6%7 — 4X3Xg + 2X X X5
U H&R'’s Method-10(1,1,1,1,0,1,0,0)
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37. (Hammer and Rudeanu, 1968, 148). Locally minimizing points find
JOa, %, . ..) = 3x,(1 = x) = 8(1 = x; 3% + 4x,x5(1 — ) — 7(1 — x5)x6 + 3x4 — Sx%5x5
S.t.

2x; = 3x, 4+ 5%, = 4x, + 2x5—xs S 2

4x1+2x2+X3+8x4-x5—3x62 4

N H&R’s Method-12(0,-,1,1,-,1)

38. (Taha, 1975, 118).
Min z(y) =4y,y:ys+6y:y.ys+ 12y,y5—2y,y,— 8y,ys

s.t.
8Y1Y2+4Y1Y3¥s+ YaYaYs+ Y1y = Sy1ys < 4
6y1Y2+3y1Y3Y4 + 2Y3Ysys— 1Ys S 4

=21Y2=9Y1¥2Y4 = 3¥3¥sYs = 2y, Y3 — 3y, ¥s < —8

N Lawler & Bell-4(1,0,1,1,0)
39. (Taha, 1975, 133).
minimize z=-5y,+7y,+10y;—3y,+ s
S.t.
~Y1=3y2+5y3—ya—4ys 20
=2y, =6y, +3y;—2y,~2ysS—4

=Y +2y;+ Y —ys22

L STORM 9(1,1,1,1,0)
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40. (Taha, 1975, 136).
minimize z="75x, + 100x; + 3x, + 4x5— 100x,x, ~ 200x,x, — 400x,%; — dx,x5 — 8x4Xs — 16x:x¢
U IE -546(1,1,1,1,1,1)
41. (Taha, 1975, 136).
minimize z=75x; + 100x; + 3x, + 4x5 — 100x,x, — 200x, x; — 400x,%; — 4x,%5 — 8%, — 16x5x,
s.t.
X +20+4x;+ X+ 205 +4x2 2
X+ 20 +4x, ~ Xy — 205 —4x5 2 =2
=X, — 23— 4x, — x, — 6x5+ 12x 2 —6
N IE -546(1,1,1,1,1,1)
42. (Taha, 1975, 137).
minimize z = XXy + 3x,%6 + X%+ 7x,
s.t.
X, +x5+6x528
3x,x, + 6x, + +4x5 < 20

4x, + 20, +xx; < 15

N IE 7 (1,0,0,1,1,1,0)
NOTE: Reference problem modified from to allow feasible solution.

43. (Zionts, 1974, 443).
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minimize z = 5x, + 7x,+ 10x, + 3x, + x5
s.t.

=X+ 3%, = 5x,-x, +4xs <2
2%, —6x,+ 3x; + 2x, — 2%, <0

Xy = 2X,+ X+ X5 <—1
L Balas’ Method17(0,1,1,0,0)
44. (Zionts, 1974, 465).

Minimize z = 3x, + 7x, + 9x; + 2x, + 6x;
s.t.
3x, +x,+ 4%+ 5x,+ 8x5 2 10
Sx;+ 2+ 9%+ x,+5x52 12

3x;+ X+ 3%+ 20, + 2x5 2 2
L STORM 14(1,0,1,1,0)

45. (Hammer, 1975, 74).
minimize f = _xl + 3x2 + X1X4 - 3xIX3 + ZXZX4 + 3x3x4 - 4x2x3
U Hammer’s Algorithm-5(1,1,1,0)

46. (Garfinkel and Nembhauser, 1972, 347).
max z(X) =-=2x,x; —4x, — 3x,x5— 2x, — 3x;
s.t.
=Xy X4 = 3%%5 = (=x; — 203 —xx5s—~ 1) SO
=2x; = 5x3— (—2x, = 3x5—-2) <0

N Lexicographic Enum. Algorithm-7 (0,1,1,0,1)
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47. (Taha, 1975, 105).
minimize z=3x; + 2x, + 5x; + 2x, + 3x;

s.t.
‘_xl —xz +x3 + 2x4 _.xs S l
=Tx;  +3x,—4x,—3x3<-2

llxl_&z —SX4—3XS <-1
L Balas’ Additive Algorithm3(0,0,0,0,1)

48. (Hammer and Rudeanu, 1968, 104).
minimize 2+ 3x; —2x, — 5x; + 2x, +4x;
s.t.
XX + 4(1 = x, 0003 — 3x,%%5 + 6(1 — x5 )x,%6 2 —1
3x,—5(1=x) (1 =x3)(1 —x5) +dxxg 2 1

N H&R’s Method-3(0,1,1,1,0,0),(0,1,1,1,1,0)

49. Problem 11, I.P. Exam 1989,

Find the minimum of f = 2x,x, — 3x,x, + 9x4x + 5x3%5%g — TX3X5 — SX,. X% — 32,3 — 13x4
U Balas’ Algorithm-18(1,0,1,0,1,1)




T-4003

68

In the tables that follow are the optimum solutions and the Overall Algorithm

solutions. Algo 1 is the solution derived from Algorithm 1 and algo 2 is the

solution derived from Algorithm 2.

A-1 Comparison of solutions.

Problem algorithm optimum | percent
number value value near
algol algo2 optimum
1/U -1 -1 100
2/U 3 3 100
3/U 6 6 100
4/U 150 150 100
5/U -58 -58 100
6/U -1 -1 100
7/0 3 3 100
8/U -5 -5 100
9/U 3 3 100
10L 5 5 100
11/L 42 0 40
12/L 15 15 100
13/L 1 1 100
14/N -11 -11 100
15N |3 -3 100
16/N -10 -10 100

(continued)
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A-1 Comparison of solutions (continued).

Problem algorithm optimum | percent
number value value near
algo 1 algo 2 optimum

17N |6 6 100
18/N 5 5 100
I9N |3 -3 100
20/N -8 -8 100
2I/N |4 4 100
22/L -8 -8 100
23/L -3 -3 100
24/L -18 -18 100
25/L -8 -8 100
26/N -7 -13 -11
27/0 15 15 100
28/N  |-6 -6 100
29/U 5 5 100
30/L -3 -3 100
31/L 0 0 100
32U |9 -9 100
33/U -7 -7 100
34/N -12 -12 100

(continued)
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A-1 Comparison of solutions (continued).

Problem algorithm optimum | percent
number value value near
algo 1 algo 2 optimum
35U -10 -10 100
36/U -22 -20 100
37/N -12 -12 100
38/N 14 -10 -4
39/L 9 9 100
40/U -546 -546 100
41/N -546 -546 100
42/N 12% 7
43/L 17 17 100
44/L 18* 14
45/U -5 -5 100
46/N -7
47/L 4* 3
48/N -3 -3 100
49/U -18 -18 100

* = solution was derived in step 3 of Overall Algorithm
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APPENDIX B
CODE OF ALGORITHM 1
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/**********************************************************************/

r* Colorado School of Mines */

/* Mathematics and Computer Science Department */
/* Author: Kevin J. Loy */

/* written as part of thesis on 8 November 1990. */

/* This program calculates the minimum value of a Pseudo-Boolean equation.*/
/* It assumes: 1- the equation is multiplied out (i.e., 2x(1-y)=2x-2xy) */
*/

/* 2- every term has at least one variable

/* 3- there are no more than 30 terms and 30 variables  */
/* 4- the equation is a minimum equation */

/* *

/* 1t can be modified to accept more variables or terms by: */
/* 1-changing ROW to 1+ the number of terms */
/* 2- changing COL to 1+ the number of variables. */
/* *

/**********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define ROW 31
#define COL 31

void indexx();

void *alloc1(size_t nl, size_t size);

void **alloc2(size_t nl, size_t n2, size_t size);
void freel(void *p);

void free2(void **p);

main(}

/* counters for the various for loops */
inti,j,k,l,m,a,b,c;

/* number of terms and number of variables */
int nterms, nvars, a_ct, b_ct, c_ct, answer, max;

/* Arrays for the terms, their ratios, the counters that count the  */
/* number of variables in each term, sum of positive and negative con- */
/* tribution, the variable ratios, and the 3 groups of rankings */

float **terms;
float **output_eq;
float *term_ratios;
float *count;

float *pos;
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float *neg;
float *var_ratios;
float *group_a;
float *group_b;
float *group_c;
float z_old;
float z_new;
int *rank;

int *rank_a;

int *rank_b;
int *rank_c;
float *sol;

/* construct memory through dynamic memory allocation */
term_ratios = (float*)alloc1( ROW, sizeof(float));
count = (float*)alloc1( ROW, sizeof(float));

pos = (float*)alloc1( COL, sizeofi(float));

neg = (float*)alloc1( COL, sizeof(float));

var_ratios = (float*)alloc1( COL, sizeof(float));
group_a = (float*)alloc1( COL, sizeof(float));

group_b = (float*)alloc1( COL, sizeof(float));

group_c = (float*)alloc1( COL, sizeof(float));

rank = (int*)alloc1( COL, sizeof(int));

rank_a = (int*)alloc1( COL, sizeof(int));

rank_b = (int*)alloc1( COL, sizeof(int));

rank_c = (int*)alloc1( COL, sizeof(int));

sol = (float*)alloc1( COL, sizeof(float));

terms = (float**)alloc2( COL, ROW, sizeof(float));
output_eq = (float**)alloc2( COL, ROW, sizeof(float));

printf(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");

prinﬁ(ﬂ

# ");
pﬁnﬁ("m~~m~’m‘");

printf(" # This program solves Pseudo-Boolean unconstrained Equat");
printf("ions.  #n");

psintf(" # It assumes: ")

printf(" N");

prindf (" # 1. The equation is multiplied-out(i.e.,2x1(1-x2)=2");
printf("x1-2x1x2) #n");

printf(" # 2. The equation is a minimization or maximization ");
printf(" #n");
printf(" # 3. Every term has at least one variable ")

printt'(" mll);

printf(" # 4. No more than 30 terms and 30 variables ")
printf(" #n"),

printf(" # 5. The person inputting data can read. "%
printf(" #n"),
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printf(" # The input that can be changed is coefficients and whet");
printf("her  #\n");

printf(" # or not variable Xi is present if 0 or 1 is not entered");

printf(". #n");

printf(" # ")

prin&' " N"); ‘

printf(" # The authoris: Kevin J. Loy ")

pﬁn&(" N");

printf(" o
printf(" A\n\n\n\n\n\n\n\n\n");

printf("If equation is a maximum equation then enter -1. Else, enter 1.\n");
printf("Do not enter anything else but these two numbers.\n");

scanf("%d" ,&max);

while((max != 1)&&(max !=-1))

printf("If you do not enter the correct number the program will");
printf(" not runf\n");

printf("If equation is a maximum equation then enter -1.\n");
printf("Else, enter 1\n");

scanf("%d" ,&max);

printf("Input each term one at a time. Input the coefficient first with\n");
printf("the appropriate sign. If the variable is present in that term\n");
printf("then enter 1 to signify that variable is in that term. Else\n");
printf("enter 0 to signify that the variable is not present.\n\n\n");

/* Initialize all variable and arrays to 0. */
nterms = nvars = z_old = z_new = answer = (;

/* prompt the user for input */
printf("How many terms are there\n");
scanf("%d" ,&nterms);
while(( nterms <= 1) Il ( nterms > 31))
printf("Please re-input numbers of terms. It must be greater ");
printf("than 1 and less than 31.\n");
scanf("%d" ,&nterms);

)
printf("How many variables are thereAn");
scanf("%d" ,&nvars);
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while(( nvars <= 1) ll ( nvars > 31))

printf("Please re-input numbers of variables that is ");
printf("greater than 0 and less than 31.\n");
scanf("%d" ,&nvars);

for (i=0; i < nterms + 1; i++)

term_ratios[i] = 0;
count[i] = 0;
for({j=0;j < nvars + 1; j++)

terms[i){j] = 0;
(})utput__eq[i] (G1=0;

for (j=0; j < nvars + 1; j++)
{

pos[j] = 0;
negljl =0
var_ratios[j] = 0;
rank[j] =0;
sol[jl=1;
rank_afj] =0;
rank_b[j] =0;
rank_c[j] =0;
group_a[j] =0;
group_b(j] = 0;
%roup_c[j] =0;

/* Input values of equations. */
/*  If variable is present then 1 is entered. Else O is entered. */
for (i=1; i <= nterms; i++)

printf("What is the coefficient of term %d™\n",i);
scanf("%f",&terms[i}[0]);
for(j=1; j <= nvars; j++)

{

printf("Hf variable %d is in term %d then enter 1\n",j,i);
printf("Else enter (\n");
scanf("%f" ,&terms[i]{j]);
}
)

/* Verify input of coefficients */
printf("The coefficient of each term in order are %.0f",terms[1]{0]);
for(i=2; i<= nterms; i++)

printf(", %.0f" ,terms[i][0]);
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printf('"\nIf this correct, enter 1\n");
printf("Else, enter 0 and re-enter all coefficients.\n");
scanf("%d", &answer);
if (answer == 0)
for( i=1;i <= nterms; i++)

printf("What is the coefficient of term %d”\n",i);
scanf("%f", &terms[i}[0]);

/*  Check input of variables to ensure they are all eitherOor 1. */
for(i=1; i<= nterms; i++)

for( j=1; j <= nvars; j++)
if ((Eerms[i]Li] 1=0) && (terms [i][j] !=1))
printf("Variable %d in term %d is not correct.\n" j,i);
printf("Please re-input.\n");
scanf("%f" ,&terms[i][j]);

}
}

}
/* Copy for output */
for(i=1; i <=nterms; i++)

for(j=0; j <= nvars ; j++)
<}>utput_eq{i] i1 = terms[i][j];
)

/*  Convert to minimize problem to solve. If, needed. */
for(i=1; i <= nterms; i++)
terms[i][0] = terms[i][0] * max;

/* Sum number of variables in each term. */
for (i=1; 1 <= nterms; i++)

for (j=1; j <= nvars; j++)
count[i] = count[i] + terms[i](j];

)
/* Step 2. Create absolute value ratio for each term. Else stmt for term */
/* is input that contains no variables (i,e,. all 0’s input ). */

for (i=1; i <= nterms; i++)

if (count[i] !=0)
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term_ratios[i] = terms[i][0]/count[i];
term_ratios[i] = fabs( term_ratios[i] );

}

else

printf("Term %d has no variables. Please re-input.\n\n",i);
for(j=1; j <= nvars; j++)

printf("If variable %d is in term %d then enter 1\n",j,i);
printf("Else enter (\n");

sca.nf("%f",&tenns[i] [i]);

C]mtput_eq[i]m = terms[i](jl;

for( j=1; j <= nvars; j++)
if ((terms{i}[j] !=0) && (terms [i][j] !=1))

printf("Variable %d in term %d is not correct.\n",j,i);
printf("Please re-input at least 1 variable");
scanf("%f" ,&terms[i][j]);

<>]utput_eq{i][i] = terms[i][j];

for (j=1; j <= nvars; j++)
count[i] = count[i] + terms[i]{j];
term_ratios[i] = terms[i][0])/count[i];
t]erm_ratios[i] = fabs( term_ratios[i] );
)

/* Steps 4 thru 7. Scanning positive terms and negative terms and adding */
/* ratio of term if variable is present. */
for (i=1; i <=nterms ; i++)
{
if (terms[i][0] < 0)
{
for( j=1; j <= nvars; j++)
if (terms[i][j] == 1)
neg(j) = neglj] + term_ratios[i];
.
if (terms[i][0] > 0)
{
for( j=1; j <= nvars; j++)

{
if (terms[i][j] == 1)
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pds[j] = pos|[j] + term_ratios[i];

}

}
/* Step 8. Creating ratio for variables.
for (j=1; j <= nvars; j++)

if (pos(j] != 0)
var_ratios[j] = neg[jl/pos{jl;

else
var_ratios{j] = 10000000.0;

/* put ratios into 3 group for sorting
act=b_ct=c_ct=0;

for ( k=1; k <= nvars; k++)
if ( var_ratios[k] == 0)
act=act+1;

group_a[k] = pos[k];
1iank_a[a_ct] =k;
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*/

*/

if ( {( var_ratios[k] > 0) && ( var_ratios[k] < 10000000 ))

b_ct=b_ct+1;
group_b[k] = var_ratios{k];
rank_b[b_ct] =k;

}
if ( {var_ratios[k] >= 10000000 )

c_Cct=c_ct+1;
group_c([k] = neg[k];
rank_c[c_ct] =k;

}
/* Sorting for the three groups
if(a_ct>1)

indexx (a_ct, group_a, rank_a);
if(b_ct> 1)

indexx (b_ct, group_b, rank_b);
if(c_ct>1)

indexx (c_ct, group_c, rank_c);

*/
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/* Step 9. Put rank of three groups into combined rank. Rank_a is put */

/* in decreasing order and the rest are put in increasing order

a=b=c=1;
for( kTa_ct; k >=1; k--)

rank[k] = rank_a[a};
a=a+1;

for( k=a_ct+1; k <=b_ct + a_ct; k++)

{
rank[k] = rank_b{b];
b=b+1;

for(k=a_ct+b_ct+ 1; k <=a_ct + c_ct + b_ct; k++)
{
rank[k] =rank_c|[c];
c=c+1;

}

/* Step 10. Get initial z_old and z_new value.

for( i=1; i<= nterms; i++)
z_old = z_old + terms[i][0];

Z_new = z_old;

k=1;
for( m=1; m <= nterms; m++)

{
if( t{erms[m][rank[k]] 1=0)
z_new = z_new - terms[m]{0];

sol[rank[k]] = 0;
terms[m][0] = 0;

*/

*/

/* Steps 11, 12, 13. Find the minimum value of the objective equation. */

while(( z_old >= z_new ) && ( k <= nvars))
{
sol[ranklk]] = 0;
k=k+1;
z_old = z_new;
for( m=1; m <= nterms; m++ )
{
if( t{crms[m][rank[k]] 1=0)

z_new = z_new - terms[m][0];
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t}erms[m] [0]=0;
)

}
solfrank[k]] = 1;
z_old = z_old * max;

/* Step 14. Print minimum z value and solution set
printf(" \n\n\n\n\n\n\n\n\n\n\n\n\nFor Equation:\n\n");
if( max == -1)

printf("Maximize ");
else printf("Minimize “);
for(i=1; i <= nterms; i++)

{
if(output_eq[i][0] < 0)
printf(" %.0f ",output_eq[i][0]);

else printf(" +%.0f ",output_eq[i][0]);
for(j=1; j <= nvars; j++)

if( output_eq[il[j] == 1)
printf("X%d",j);

}
printf("\n\n\nPress 1 and enter to see solution\n");
scanf( "%d", &answer);
printf("\n\n\n\The solution is %.3f\n\n",z_old);
for( i=1; i <=nvars; i++)

printf("Variable %d is %.1f\n", i, sol[i]);

*/
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/* Receives number of entries of array to be sorted, and array.
/* sends sorted index with original array unchanged.

void indexx(n,arrin,indx)
int n,indx[];
f{'loat arrin[];
int 1,j,ir,indxt,i;
float q;

I=(n>>1)+1;
ir=n;
for (;;)

{

if(1>1)
g=arrin[(indxt=indx[--1])];

else

(
q=arrin(indxt=indx[ir])J;
indx[ir]=indx[1];

{
indx[1]=indxt;
return;

} }

i=1;
}=l << 1;
while (j <=1Ir)
if (] < Ir && arrin[indx[j]] < arrin[indx[j+1]])
J++
if (c{l < arrin[indx[j]])

indx[i]=indx[j];
J'} += (i=j);

else j=ir+1;

}
indx[i]=indxt;
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/*****#****************************************************************

Allocate and free multidimensional arrays

3l afe 3k aje e ab ale e 25¢ 2 e 2 3 ke 3k 3k 3 2 ak ae ke 26 3 3 e 3k ke e 3¢ 3k ke e e 3k e 3k s 3k ke ke 3¢ she 3k sk 3k e ke 30 o e s a3k e ok o ok dk ae ke k¢ 3k 3 e 3 ok e e 3k ofe o ok
Author: Dave Hale, Colorado School of Mines, 12/31/89

Modified by: Jim Watson, Colorado School of Mines, 7 July 1990

***********************************************************************/

/* allocate a 1-d array */
void *allocl (size_t nl,size_t size)

{
void *p;
if ((p=malloc(n1*size)) == NULL)
return NULL;
| return p;

/* free a 1-d array */
void freel (void *p)

free (p);

/* allocate a 2-d array */

void **alloc2 (size_t nl1, size_t n2, size_t size)
size_ti2;
void **p;

if ((p=(void**)malloc(n2*sizeof(void*)))==NULL)
return NULL,;
if (({p[O]=(void*)malloc(n2*n1*size))==NULL)

free (p);
return NULL;

}
for(i2=0; i2 < n2; i2++)

pli2] = (char*)p[0] + size*n1*i2;
return p; :

/* free a 2-d array */
void free2 (void **p)

free (p[0]);
free (p);
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APPENDIX C
FLOWCHARTS
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Flowchart for the Overall Algorithm to solve system of equations

with an Objective equation and constraints

STEP 1

-Solve Objective equation using algorithm 1
-Solve system of constraints using solution from algorithem 1

STEP S

- Using minium value from Step1 for the Objective
Equation and minimum value from Step 4 for
constraints construct an upper and lower bound .
The value from Siep 1 is the lower and the
minimum from Step 4 is the upper bound,

<End the Aigorithm,
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Algorithm 1 for solving the Objective Equation

Minimization Convert to
STEP 1 Problem? min. problem
by multilpying
equation by -1
]
STEP 2 Multiply
Equation out
i.e. 2x(1-y)a2x-2xy|
<Group Positive terms
“Record ratio of the absolute
value of the coefl. over
number of varisbles in term
for each term in block RATIO
STEP 3A ’
Record zero
for that
STEP4 variable in
column 4
STEP 4A
—_—
Return to
slop 4 and
STEPS o for next Step 6
variable pege 2

page !
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STEP6

STEP 6A

First variable
in column 3a present in
Negalive terms?

Scan Negative terms.
Each term that has

Record zero
for that
variabie in
column 6

Retum 0
Swep 6 and

do next

variable

STEP7

STeEP S

Algarithm t Flowchart

page 2

Step 9
paged
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STEP9

s there more than
one ratio equal to zero
in column 8?

-Rank order zero ratio
variable according to
decreasing value from
column 4a.

-Rank largest value
first, elc among afl
the other variables

NOTE: Ties iz column 4a
are broken stbrtrarily.

Algorithm t Flowchart
page 3

ts there more than
ane ratio equal to infini
in coloma 87

NOTE: Ties is column 6a
are broken arbritrarily,

y

varisble, § any, and the
infinke ratio variable, ¥ any.
and in incressing order cank
the remaining varigbles
scconding 1 the ratio in
column 8,
NOTE: 11there are any ties
reler 10 calumn 4a and rank
them in decreasing order.
¥ there is atil a tie then
break them arbrtrarilly.

- Record in block 9.

_y

Swp 10
page 4

<in batween the 2ec0 ratio
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STEP 10

-Turn all variables on

2° old in block 10
-Record values of x* as
x* old in block 10

(i.e.. make them equal to 1)
-Solve for 2° and record as

STEP 11

!

-Cross-out any previous
z° new and x° new in
block 11

-Change first non-zero

variable in rank to zero in
block 9.

-Obtain new 2° and call it
Z* new and record in
block 11 with new x°
values

88

Algorithm 1 Flowchart
page 4

-Gotlo Step 11
for next variable

STEP 12

is
z° old < Z°new ?

Yes

STEP 13

STEP 14

A 4

-All other variable
remain same value

Cross-out 2° old and
x* old in block 10
Record 2° new and
x* new as 2° old and

-2* old in block 10
is minimum value of equation
-x* old is solution set

maich x° old with rank order
10 determine values of variables

Rewum © snpmmw.]
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Algorithm 2 for solving the system of constraints page 1

STEP 1

STEP 2

STEP 3

STEP 3A

re there naqualities
that are <=?

-Convert ali constraints
withe = to >= by multilpying
constraint by -1

Constraints
Multiplied out ?

Multiply
constraints out
i.e. 2x{1-y)u=2x-2xy

[wummmm1]<
1

-Multiply ith constraint by y (if the
original variable is y then use 2 ).
{These are information variables and
are 10 be wreated &s 0-1)

~For each constraint that has a
non-2ero RHS add the oppasite of
the RHS to both sides of that constraint.

<Group Positive terms from all
the constraints together and
group Negative terms from alt
the constraints together.

-Record ratio of the absolute
value of the coefl. aver
number of variables in the term
for each term in block RATIO.

l

Record variables
in column 3a
Origina! variables
first then y .

Step 4
page 2
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Algorithm 2 Flowchart
['From Step 3 page 1 ] page 2

First variable Racord zero
0 column 3a present in for that
STEP 4 Positive terms variabla in
column 4
Scan Positive terms.
Each term that has
variable thea record
ratio of term in
column 4
Sum column 4
STEP 4A Racord in cohmale
. ]
Return t0
step 4 and
STEPS do for next
vasiable

L}

STEP6 Tlecord zero
for that
variable in

Lcolumn 6 |
Scan Negative terms.
Each term that has
variable then record
ratio of term in -
Sum column 6
STEP 6A
—_— ]
STEP7 [ roumto
step 6 and
do for nexi

variable




T-4003 01

Algorithm 2 Flowchart
3
STEP 8 ts No poe
there a zero in For other than
9 -
column 427 y variables
Record infinity
=1 for the ratio of
that variable
in column 8.

Create ratio of sum in
6a over sum in 4a in
each variable row
for remaining variables.
Record in block 8.

ls
there another 2er0
in column 4a?

STEP 9

Step 10 §
4 L— g
page mammmmma

-Record value of zero for varisbles in block 9.
NOTE: ¥ there are any ties then refer 10 column 4a

and rank them in decreasing order. f there is stifl a
tie then break arbritrarily.
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Algorithm 2 Fowchast

page 3a
STEP 8A ts No . ]
there a zero in For  y variables
column 4a?
Record Infinity
91 for the ratio of
. that variable
in column 8.
Create ratio of sum in
Yes is 62 over sum in 4a in
there another zero No sach variable row
in column 4a? for remaining variables.
Recard in block 8
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From Step 9 -Turn all variables off

(i.e., make them equaf to 0)
-Record values of x* as

x* old in block 10

STEP 10 )
-Solve system ol constraints

STEP 11 Yes

systam of constraints
in block 1 satisfied?

STEP 12

93

Algorithm 2 Flowchart
page 4

STEP 13

STEP 4

Current values of varisbies in block
10 is solution set.

<atch x° with rank arder in block 9
determine values of vasishles.

Use x* 10 soive for minimum value

of Obiective Equati

[ nmnsupwmmJ

—d
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APPENDIX D
WORKSHEETS
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1 Minimum Problem
2
3 Group Temms
POS. NEG.
RATIO RATIO
3A (+) (-) )
Variables (+)
4A 6 6A 8
9 10 .
Rark . 4 S 6 8¢ 9 10 11 zold] x old
varisble
Value
1
z° new X new xX° new
14 Solytion Z°= X =
WORKSHEET FOR ALGORITHM 1 (objecive equation)BY KEVIN J. LOY
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2
3 Group Tems

POS. NEG,

RATIO RATIO

A (+) (-)

4 4A 6 Value

10 x°

14 Solution X°= 2%

2 {constraints) BY KEVIN J. 18 Oct 90
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APPENDIX E
CONDENSED VERSION 0F OVERALL ALGORITHM.
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Overall Algorithm for soiving System of Pseudu-Boolean Equation

This algorithm is designed for 0-1 variable system of equations. The system of
equations usually consists of an objective equation and one or more constraints. The
author does not claim optimality.

Solve for the minimum value and the solution set of the Objective Equation (OE)
using Algorithm 1. Take the solution set of the OE and apply it to the system of
constraints (SC).

Are the SC satisfied? If yes then end the algorithm because the solution set is
feasible. If not thea go to Step 3.

Are there any zero variables in the solution set? If yes then change the last zero
variable in the solution set to one and return to Step 2. If no then go to Step 4.

Solve for the minimum value and solution set of the SC using Algorithm 2. If the
solution set exists the go to Step 5. If it does not exist then stop algorithm because
solution does not exist.

At this point the algorithm can only bound the actual value of the OE. Using the
minimum value from Step 1 and the minimum value from Step 4 create a bound with a
lower bound from Step 1 and an upper bound from Step 4. End the algorithm.
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ALGORITHM 1 for Objective Equation

This algorithm is applicable to all 0,1 variable unconstrained problems. Use the
worksheet provided to record information. The number of each step corresponds to the
number of the block on the worksheet.

Is the equation a minimize equation? If no then multiply the problem by -1.
Record the minimum equation in block 1

multiply the equation out. Example:
Minimize -2x,(1 = x,) + X,(1 — x,) = =2, + 2X,., + X3 — XX,
Record this step in block 2.

Step 3

Record the positive terms of the equation in the block marked POS.

Record the absolute value of the negative terms in the block marked NEG

In the block marked RATIO record the ratio of the absolute value of the coefficient of
each term over the number of variables in that term.

Step 3a--Record each variable in column 3a putting one variable in each row.

Step 4

Scan each term in the positive block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
4 for the first variable.

NOTE: If the first variable is not present in any of the positive terms then record 0 for
that variable in column 4.

Step 4a--Sum the recorded answers in column 4 for the first variable and record that
value in column 4a of that variable row.

Repeat step 4 and 4a for each variable in column 3a. After this step you should have a
real number recorded in column 4a for each variable in column 3a.

Scan each term in the negative block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
6 of that variable row.

NOTE: If the first variable is not pre<en* in any of the negative terms then record O for
that variable in column 6.

Step 6a--Sum the recorded answers in coiumn 6 for the first variable and record that
value in column 6a of that v.: “1hle row.
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Repeat step 6 and 6a for each variable in column 3a. After this step you should have a
real number recorded in column 6a for each variable in column 3a.

Create a ratio for each variable of the number recorded in column 6a over the number
recorded in column 4a. Is there a zero in column 4a? If yes, then record infinity (i.e., ¢°)
for the ratio of that variable in column 8. Do this for all variables that have a zero in
column 4a.

In increasing order rank each variable according to the ratio created in column 8. The
variable with the smallest ratio is in column 1 of block 9, etc.
Record one for the value of each variable in the value row of block 9.

NOTE: If more than one ratio equal to zero then rank those variables first among the
other variables. Then rank them according to the decreasing values from column 4a. If
more than one ratio equal to infinity then rank them last among the other variables. Then
rank them according the increasing value from column 6a.

NOTE: If there are ties of the non-zero and non-infinity ratios in column 8 then refer to
column 4a and rank them in decreasing order.
NOTE: If there are ties in either 6a or 4a then break them arbitrarily.

Using the equation from block 2 solve for a z* value where all variables are equal to 1.
Call this value z* old and record z* old in block 10.

Record the current value of the variables in block 10 as x* old in vector form (i.e.,
(0,1,1,1)) in the rank order established in Step 9.

Siep 11

Cross out any previous z* new and x* new in block 11.

Change the first non-zero variable in the rank order in block 9 to 0 by crossing out the 1
below the variable in block 9 and record 0.

Obtain a new z* value, with the new variable values, from the equation in block 2.

Call this value z* new and record z* new in block 11.

Call the new variable values x* new.

Record x* new as a vector (i.e., (0,1,1,1)) in the rank order established in Step 9.
Record x* new in the correspondmg z* new row of block 11.

Step 12

If the z* old is less than the z* new then stop and Goto step 14.

Else, cross out z* old and x* old in block 10 and record z* new and x* new in block 10
as z* old and x* old.

Goto step 13.
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Is there a non-zero variable remaining in block 97 If yes, then repeat step 11 for the next
non-zero variable. If no, then go to Step 14.

Step 14

z* old in block 10 is the minimum value of the equation.

The current values of the variables in block 10, the x* old column, is the solution set.
Match x* old with the rank order of the variables in block 9 to determine the values of :he
variables.

Record z* old and x* old in block 14.

End the algorithm.

NOTE: If you had to convert the equation to a minimum equation then you must multiple
the z* value by -1 to obtain the actual value of the equation.
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ALGORITHM 2 for constraints

This algorithm is applicable to all 0,1 variable constrained problems. Use the
worksheet provided to record information. The number of each step corresponds to the
number of the block on the worksheet.

Stepl

Are all constraints 2? If no then multiply all constraints that are < by -1.
Multiply the constraints out. Example:

=20,(1 -x)+x,(1-x,) 23 becomes —2x,+2x,x,+X;—Xx, 23

Record all constraints after this step in block 1.

Step 2

multiply the i-th constraint by y; if y; is the original variable then use z; )and add the
opposite of the right hand side (RHS) to both sides of the each constraint.

Record in block 2. This y; will be used to determine how tight is the i-th constraint. It
will be treated as a normal variable but will not be solved for.

Record positive terms of all constraints in the block marked POS.

Record the absolute value of the negative terms of all constraints in the block marked
NEG.

In the block marked RATIO record the ratio of the absolute value of the coefficient of

each term over the number of variables, boi. -.riginal and y;, in that term.

Record each variable in column 3a putting one variable in each row.
Record all original variables first then the y;.

Scan each term in the positive block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio, below the term, in
column 4 for the first variable.

NOTE: If the first variable is not present in any of the positive terms then record O for
that variable in column 4.
NOTE: Do this for the y variables also.

Sum the recorded answers in column 4 for the first variable and record that value in
column 4a of that variable row.

Repeat step 4 and 4a for each variable in column 3a. After this step you should have a
real number recorded in column 4a for each variable in column 3a.
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Scan each term in the negative block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
6 of that variable row.

NOTE: If the first variable is not present in any of the negative terms then record 0 for
that variable in column 6.

NOTE: Do this for the y variables also.

Step 6a--Sum the recorded answers in column 6 for the first variable and record that
value in column 6a of that variable row.

Repeat step 6 and 6a for each variable in column 3a. After this step you should have a
real number recorded in column 6a for each variable in column 3a.

Step 8
For all variables other than the y; introduced at Step 2.

Create a ratio for each variable of the number recorded in column 6a over the number
recorded in column 4a. Is there a zero in column 4a? If yes, then record infinity (i.e., o)
for the ratio of that variable in column 8. Do this for all variables that have a zero in
column 4a. '

Step 8a
For all variables y; introduced at Step 2.

If the ratio for y;is less than one then that constraint in probably not restrictive. Record n

(i.e., not restrictive) for the rank in block 9. If the ratio for y, in greater than one then that
constraint is restrictive. Record r (i.e., restrictive) for the rank in block 9. Restrictive is
defined to mean most, if not all, of the original variables must be 1. Non-restrictive
means the original variables could be either 0 or 1 without violating the constraints.

In increasing order rank each variable according to the ratio created in column 8. The
variable with the smallest ratio is ranked 1 block 9, etc.
Record zero for the value of each variable in the value column of block 9.

NOTE: If more than one ratio equal to zero then rank those variables first among the
other variables. Then rank them according to the decreasing values from column 4a. If
more than one ratio equal to infinity then rank them last among the other variables. Then
rank them according the increasing value from column 6a.

NOTE: If there are ties of non-zero o: non-infinity ratios in column 8 then refer to
column 4a and rank them in decreasing order.
NOTE: If there are ties in either 6a or 4a then break them arbitrarily.
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Record the value of Q for the variables in block 10 as x* in vector form (i.e., (0,0,0,0)) in
the rank order established in Step 9.
Solve the system of constraints.

For each constraint does x* satisfied the constraint in block 1?
If all constraints are satisfied then Goto block 14,
Else Goto Step 12

Step 12

Cross out any previous x* in block 10.

Change the first zero variable in the rank order in block 9 to 1 by crossing out the 0 in the
variable row of block 9 and record 1.

Record x* new in block 10 in the order established in Step 9.

Solve the system of constraints.

For each constraint does x* new satisfy the constraints in block 1?

If all constraints are satisfied then Goto block 14.

Else, Goto step 13.

Is there a zero variable remaining in block 9?7 If yes, then repeat step 12. If no, then end
algorithm because there is no feasible solution.

The current values of the variables in block 10, the x* column, is the solution set.

Match x* with the rank order of the variables in block 9 to determine the values of the
variables.

Record x* in block 14.

Use x* to solve for the value of the objective equation and record the value (z*) in block
14.

End Algorithm 2.

Return to Overall Algorithm.




T-4003 105

APPENDIX F
OUTPUT FOR NUMBER 29
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Appendix G contains screen prompts, input, and output.

- o - -

§~ ———— -~

# This program solves Pseudo-Boolean unconstrained Equations.
§ It assumes: '
1. the equation is multiplied-out(i.e.,2x1 (1-x2)=2x1-2x1x2)
2. the equation is a minimization or maximization
3. every term has at least one variable
4. no more than 30 terms and 30 variables
The input that can be changed is coefficients and whether
or not variable Xi is present if 0 or 1 is not entered.

W e e W S e e e

The author is: Kevin J. Loy

If equation is a maximum equation then enter -1. Else, enter 1.
Do not enter anything else but these two numbers.

-1

Input each term one at a time. Input the coefficient first with
the appropriate sign. If the variable is perseant in that term
then enter 1 to signify that variable is in that ‘term. Else
enter 0 to signify that the variable is not present.

How many terms are there?

6

How many variables are there?

6

What is the coefficient of term 1?
3 .

If variable 1 is in term 1 then enter 1
Else enter 0

1l
If variable 2 is in term 1 then enter 1

Else enter 0

0
If variable 3 is in term 1 then ente: 1

Else enter 0

0 W W N i e e S W e R
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0

If variable 4 is in term 1

Else enter 0
0

If variable 5 is in term 1

Else enter O
0

If variable 6 is in term 1

Else enter 0
0

What is the coefficient of

-1

If variable 1 is in term 2

Else enter 0
0
If variable 2
Else enter 0
1

If variable 3 i

Else enter 0
0
If variable 4
Else enter 0
0
If variable S
Else enter 0
0

is

is

in
in
in

in

term 2

term 2

term 2

term 2

If variable 6 is in term 2

Else enter 0
0

What is the coefficient of

-2

If variable 1 is in term 3

Else enter 0

1

If variable 2
Else enter 0

0

If variable 3
Else enter 0

1

If variable 4
Else enter 0

0

If variable 5
Else enter 0

1

If variable 6 i

Else enter 0
0

What is the coefficient of

is

in

in

in

in

in

term 3

term 3

term 3

term 3

term 3

then

then

then

term

then

then

then

then

then

then

term

then

then

then

then

then

then

term

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter
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2
If variable 1 is in term 4 then enter 1
Else enter 0

0
If variable 2 is in term 4 then enter 1

Else enter 0

1

If variable 3 is in term 4 then enter 1
Else enter 0

0

If variable 4 is in term 4 then enter 1
Else enter 0

0

If variable 5 is in term 4 then enter 1
Else enter 0

0

If variable 6 is in term 4 then enter 1
Else enter 0

1

What is the coefficient of term 5?

_1 .

If variable 1 is in term S then enter 1
Else enter 0

1

If variable 2 is in term S then enter 1
Else enter 0

0

If variable 3 is in term 5 then enter 1
Else enter 0

0

If variable 4 is in term 5 then enter 1
Else enter 0

1

If variable 5 is in term 5 then enter 1
Else enter 0

0

If variable 6 is in term 5 then enter 1
Else enter 0

1

What is the coefficient of term 6?

2

If variable 1 is in term 6 then enter 1
Else enter 0

0

If variable 2 is in term 6 then enter 1
Else enter 0

0

If variable 3 is in term 6 then enter 1
Else enter 0

0
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If variable 4 is in term 6 then enter 1
Else enter 0

1l
If variable 5 is in term 6 then enter 1

Else enter 0

0
If variable 6 is in term 6 then enter 1

Else enter 0

0 .
The coefficient of each term in order are 3, -1, -2, 2, -1, 2

If this correct, enter 1
Else, enter 0 and re-enter all coefficients.

1

For Equation:
Maximize +3 X1 -1 X2 -2 X1IX3X5 +2 X2X6 -1 X1X4X6 +2 X4

Press 1 and enter to see solution
1

The solution is 5.000.

Variable 1 is 1.0.
Variable 2 is 1.0.
Variable 3 is 0.0g
Variable 4 is 1.0,
Variable 5 is 0
Variable 6 is 1

109
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APPENDIX G
PSEUDO - CODE OF ALGORITHM 1




T-4003 1

The objective equation can be expressed as
L] LI 1 if x; present in term j,
= reresXy) = T.where T.=c: x.p", ..l= . and x°=], .,={ '
z=fx ) ,E'x g where 4 =6 .‘1;11 i WX Pi=1o if not present in term j.
For objective equation or function z = f(x,, x,, ..., X,) with:
X; =i-th variable, 1 <i<n,x;=0or 1.
n = number of variables
m = number of terms
¢; = coefficient of j-th term, 0 <j <m.

1.  If problem is not a min problem then convert to min problem by multiplying z
by -1.

2.  Multiply problem out into simplified form (i.e. no parentheses).

il
3. Foreveryterm: r;=—— . Ther;is the term ratio.
ZPV

i=1

4. Fori=1ton:
lif¢; >0

0<d; =,§’1 r;p;V;, where W} ={0 if e, <0

0sd=$ b __{lifc,-<0
i = & TiPsVj, Where ;= 0if¢;>0

5. Since d;" and d; will not equal zero at the same time:

& ifd’=0theny, =00

; =— where . The v, is th i i0.
=g Y litdr =0 thenv, =0 © vatiable rao

6. Sortv,s.t v,<..<v, where ais the subscript of the smallest ratio and k is
the subscript of the largest ratio. Each variable is associated with a ratio and ranked in
the same order as the associated ratio. For example, x,, ..., X, is the ranking with the same
subscripts.

7. Letallx;=1. .
Solve for f(x,, x;,...X,) =z where all x; = 1.
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8.  Fori = subscript of variable with smallest ratio in rank to subscript of variable
with largest ratio. Do this if there exists x; # 0. If every x; =0 then go to 9.

Let x, = 0 where a is the subscript of first non-zero variable in rank order.
Solve for f(x,; ..., Xn) = z using current values of x

Iz <z then stop and go to 9.

Else z = z" and return to 8.

9. Z' is solution and current values of x; is solution set.




